Vibration Spectroscopy of Complex Formation in Aqueous Solutions of Isopropanol

  • A. M. Kutsyk Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • O. O. Ilchenko Department of Micro & Nanotechnology, Technical University of Denmark
  • Ya. M. Yuzvenko Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • V. V. Obukhovsky Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • V. V. Nikonova Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
Keywords: complex formation, ATR FTIR spectroscopy, 2D correlation spectroscopy, multivariate curve resolution

Abstract

The formation of molecular complexes in isopropanol-water solutions is studied by means of vibrational spectroscopy techniques. The ATR FTIR spectra of solutions with different mixing ratios are detected. The multivariate curve resolution of the experimental data set shows that the investigated solution could be treated as a four-component mixture, which contains pure isopropanol, pure water, and two molecular complexes.

References


  1. M.K. Alam, J.B. Callis. Elucidation of species in alcohol-water mixtures using near-IR spectroscopy and multivariate statistics, Anal. Chem. 66, 2293 (1994).
    https://doi.org/10.1021/ac00086a015

  2. K. Yoshida, T. Yamaguchi. Low-frequency Raman spectroscopy of aqueous solutions of aliphatic alcohols. Z. Naturforsch. 56a, 529 (2001).

  3. J. McGregor, R. Li, J. Axel Zeitler, C. D'Agostino, J.H.P. Collins, M.D. Mantle, H. Mayar, J.D. Holbrey, M. Falkowska, T.G.A. Youngs, C. Hardacre, E. Hugh Stitt, L.F. Gladden. Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study. Phys. Chem. Chem. Phys. 17, 30481 (2015).
    https://doi.org/10.1039/C5CP01132A

  4. R. Li, C. D'Agostino, J. McGregor, M.D. Mantle, A. Zeitler, L.F. Gladden. Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 118, 10156 (2014).
    https://doi.org/10.1021/jp502799x

  5. H.-J. Tong, J.-Y. Yu, Y.-H. Zhang, J.P. Reid. Observation of conformation changes in 1-propanol-water complexes by FTIR spectroscopy. J. Phys. Chem. A 114, 6795 (2010).
    https://doi.org/10.1021/jp912180d

  6. J.W. Bye, C.L. Freeman, J.D. Howard, G. Herz, J. Mc-Gregor, R.J. Falconer. Analysis of mesoscopic structured 2-propanol/water mixtures using pressure perturbation calorimetry and molecular dynamic simulation. J. Solut. Chem. 46, 175 (2017).
    https://doi.org/10.1007/s10953-016-0554-y

  7. L.A. Bulavin, A.V. Chalyi, O.I. Bilous. Anomalous propagation and scattering of sound in 2-propanol water solution near its singular point. J. Mol. Liq. 235, 24 (2017).
    https://doi.org/10.1016/j.molliq.2017.01.040

  8. T. Sato, R. Buchner. Dielectric relaxation spectroscopy of 2-propanol-water mixtures. J. Chem. Phys. 118, 4606 (2003).
    https://doi.org/10.1063/1.1543137

  9. T. Sato, R. Buchner. The cooperative dynamics of the H-bond system in 2-propanol/water mixtures: Steric hindrance effects of nonpolar head group. J. Chem. Phys. 119, 10789 (2003).
    https://doi.org/10.1063/1.1620996

  10. D. Peeters, P. Huyskens. Endothermicity of water/alcohol mixtures. J. Mol. Struct. 300, 539 (1993).
    https://doi.org/10.1016/0022-2860(93)87046-C

  11. L.A. Bulavin, V.Ya. Gotsulskii, N.P. Malomuzh, V.E. Chechko. Relaxation and equilibrium properties of dilute aqueous solutions of alcohols. Russ. Chem. Bull. 65, 851 (2016).
    https://doi.org/10.1007/s11172-016-1391-2

  12. J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. ? Agren, J. Nordren. Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 91, 157401 (2003).
    https://doi.org/10.1103/PhysRevLett.91.157401

  13. T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov, S.V. Patsaeva. Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions. J. Phys. Chem. A, 119, 10806 (2015).
    https://doi.org/10.1021/acs.jpca.5b06678

  14. V.Ya. Gotsul'skii, N.P. Malomuzh, V.E. Chechko. Features of the temperature and concentration dependences of the contraction of aqueous solutions of ethanol. Russ. J. Phys. Chem. A 87, 1638 (2013).
    https://doi.org/10.1134/S0036024413100087

  15. H. Yilmaz. Excess properties of alcohol-water systems at 298.15 K. Turk. J. Phys. 26, 243 (2002).

  16. F.-M. Pang, C.-E. Seng, T.-T. Teng, M.H. Ibrahim. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71 (2007).
    https://doi.org/10.1016/j.molliq.2007.01.003

  17. A.Yu. Manakov, L.S. Aladko, A.G. Ogienko, A.I. Ancharov. Hydrate formation in the system of n-propanol-water. J. Therm. Anal. Calorim. 111, 885 (2013).
    https://doi.org/10.1007/s10973-012-2246-1

  18. P. Tomza, M.A. Czarnecki. Microheterogeneity in binary mixtures of propyl alcohols with water: NIR spectroscopic, two-dimensional correlation and multivariate curve resolution study. J. Mol. Liq. 209, 115 (2015).
    https://doi.org/10.1016/j.molliq.2015.05.033

  19. L.A. Bulavin, V.Ya. Gotsul'skii, N.P. Malomuzh, M.V. Stiranets. Refractometry of water-ethanol solutions near their contraction point. Ukr. J. Phys. 60, 1108 (2015).
    https://doi.org/10.15407/ujpe60.11.1108

  20. K.C. Pratt, W.A. Wakeham. The mutual diffusion coefficient for binary mixtures of wster and the isomers of propanol. Proc. R. Soc. Lond. A. 342, 401 (1975).
    https://doi.org/10.1098/rspa.1975.0031

  21. K.R. Harris, T. Goscinska, H.N. Lam. Mutual diffusion coefficients for the systems water-ethanol and water-propan-1-ol at 25?C. J. Chem. Soc. Faraday Trans. 89, 1969 (1993).
    https://doi.org/10.1039/FT9938901969

  22. A. Mialdun, V. Yasnou, V. Shevtsova, A. K?oniger, W. K?ohler, D. Alonso de Mezquia, M. M. Bou-Ali. A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of waterisopropanol mixtures. J. Chem. Phys. 136, 244512 (2012).
    https://doi.org/10.1063/1.4730306

  23. L. Hao, D.G. Leaist. Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J. Chem. Eng. Data 41, 210 (1996).
    https://doi.org/10.1021/je950222q

  24. S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper. Molecular segregation observed in a concentrated alcohol-water solution. Nature 416, 829 (2002).
    https://doi.org/10.1038/416829a

  25. J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582 (2012).
    https://doi.org/10.1038/nature11570

  26. J.G. Davis, B.M. Rankin, K.P. Gierszal, D. Ben-Amotz. On the cooperativity of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nature Chem. 5, 796 (2013).
    https://doi.org/10.1038/nchem.1716

  27. V.V. Obukhovsky, V.V. Nikonova. Interdiffusion in water solutions of ethyl alcohol. Ukr. J. Phys. 55, 891 (2010).

  28. K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev. Stationary diffusion in the membrane systems with the ongoing reversible chemical reactions. J. Mol. Liq. 120, 71 (2005).
    https://doi.org/10.1016/j.molliq.2004.07.038

  29. H.A. Zarei, S. Shahvarpour. Volumetric properties of binary and ternary liquid mixtures of 1-propanol (1) + 2-propanol (2) + water (3) at different temperatures and ambient pressure (81.5 kPa). J. Chem. Eng. Data 53, 1660 (2008).
    https://doi.org/10.1021/je800158z

  30. J.-W. Shin, E.R. Bernstein. Experimental and theoretical studies of isolated neutral and ionic 2-propanol and their clusters. J. Chem. Phys. 130, 214306 (2009).
    https://doi.org/10.1063/1.3148378

  31. I.Yu. Doroshenko. Matrix isolation study of the formation of methanol cluster structures in the spectral region of C-O and O-H stretch vibrations. Low Temp. Phys. 37, 604 (2011).
    https://doi.org/10.1063/1.3643482

  32. G. Matisz, A.-M. Kelterer, W.M.F. Fabian, S. Kuns’agi-M’at’e. Application of the quantum cluster equilibrium (QCE) model for the liquid phase of primary alcohols using B3LYP and B3LYP-D DFT methods. J. Phys. Chem. B 115, 3936 (2011).
    https://doi.org/10.1021/jp109950h

  33. M. Starzak, M. Mathlouthi. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chem. 82, 3 (2003).
    https://doi.org/10.1016/S0308-8146(02)00584-8

  34. H. Cybulski, J. Sadlej. On the calculation of the vibrational Raman spectra of small water clusters. Chem. Phys. 342, 163 (2007).
    https://doi.org/10.1016/j.chemphys.2007.09.058

  35. S.R. Gadre, S.D. Yeole, N. Sahu. Quantum cluster investigations of molecular clusters. Chem. Rev. 114, 12132 (2014).
    https://doi.org/10.1021/cr4006632

  36. F. Weinhold. Quantum cluster equilibrium theory of liquids: Illustrative applications to water. J. Chem. Phys. 109, 373 (1998).
    https://doi.org/10.1063/1.476574

  37. G. Matisz, A.-M. Kelterer, W.M.F. Fabian, S. Kuns’agi-M’at’e. Structural properties of methanol-water binary mixtures within the quantum cluster equilibrium model. Phys. Chem. Chem. Phys. 17, 8467 (2015).
    https://doi.org/10.1039/C4CP05836D

  38. H.F. Shurvel. Spectra-structure correlations in the mid- and far-infrared. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).

  39. L.G. Weyer, S.-C. Lo. Spectra-structure correlations in the near-infrared. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).

  40. H.G.M. Edwards. Spectra-structure correlations in Raman spectroscopy. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).

  41. A. de Juan, R. Tauler. Multivariate curve resolution-alternating least squares for spectroscopic data. In Resolving Spectral Mixtures with Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging (Elsevier, 2016).
    https://doi.org/10.1016/B978-0-444-63638-6.00002-4

  42. O. Ilchenko, V. Obukhovsky, V. Lemeshko, V. Nikonova, A. Kutsyk. Raman spectroscopy investigations of complexation processes in water-methanol solutions. Bulletin of T. Shevchenko Nat. Univ. of Kyiv. Radiophys. Electr. 17, 34 (2012).

  43. O.O. Ilchenko, Y.V. Pilgun, A.S. Reynt, A.M. Kutsyk. NNLS and MCR-ALS decomposition of Raman and FTIR spectra of multicomponent liquid solutions. Ukr. J. Phys. 61, 519 (2016).
    https://doi.org/10.15407/ujpe61.06.0519

  44. Q. Li, N. Wang, Q. Zhou, S. Sun, Z. Yu. Excess infrared absorption spectroscopy and its applications in the studies of hydrogen bonds in alcohol-containing binary mixtures. Appl. Spec. 62, 166 (2008).
    https://doi.org/10.1366/000370208783575663

  45. O. Ilchehko, V. Nikonova, A. Kutsyk, V. Obukhovsky. Quantitative analysis of complex formation in acetonechloroform and ethyl acetate-cyclohexane solutions. Ukr. J. Phys. 59, 268 (2014).
    https://doi.org/10.15407/ujpe59.03.0268

  46. O.O. Ilchenko, A.M. Kutsyk, Y.V. Pilgun, V.V. Obukhovsky, V.V. Nikonova. Formation of molecular complexes in liquid benzene-chloroform mixtures examined by mid-IR 2D correlation spectroscopy and multivariate curve resolution. Ukr. J. Phys. 61, 508 (2016).
    https://doi.org/10.15407/ujpe61.06.0508

  47. A. Kutsyk, O. Ilchenko, Y. Pilgun, V. Obukhovsky, V. Nikonova. Complex formation in liquid diethyl ether-chloroform mixtures examined by 2D correlation mid-IR spectroscopy. J. Mol. Struct. 1124, 117 (2016).
    https://doi.org/10.1016/j.molstruc.2016.03.035

  48. J. Jaumot, A. de Juan, R. Tauler.MCR-ALS GUI 2.0: New features and applications. Chem. Intell. Lab. Sys. 140, 1 (2015).
    https://doi.org/10.1016/j.chemolab.2014.10.003

  49. S. Kucheryavskiy, W. Windig, A. Bogomolov. Spectral unmixing using the concept of pure variables. In Resolving Spectral Mixtures with Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging (Elsevier, 2016).
    https://doi.org/10.1016/B978-0-444-63638-6.00003-6

  50. K.H. Esbensen, P. Geladi. Principal component analysis: concept, geometrical interpretation, mathematical background, algorithms, history, practice. In Comprehensive Chemometrics (Elsevier, 2009).
    https://doi.org/10.1016/B978-044452701-1.00043-0

  51. I.Yu. Doroshenko. Spectroscopic study of the n-hexanol cluster structure, isolated in an argon matrix. Low Temp. Phys. 43, 732 (2017).
    https://doi.org/10.1063/1.4985983

  52. I. Doroshenko, V. Balevicius, G. Pitsevich, K. Aidas, V. Sablinskas, V. Pogorelov. FTIR/PCA study of propanol in argon matrix: The initial stage of clustering and conformational transitions. Low Temp. Phys. 40, 1077 (2014).
    https://doi.org/10.1063/1.4902228

  53. V.Ye. Pogorelov, I.Yu. Doroshenko, Vibrational spectra of water clusters, trapped in low temperature matrices. Low Temp. Phys. 42, 1163 (2016).
    https://doi.org/10.1063/1.4973401
Published
2018-07-12
How to Cite
Kutsyk, A., Ilchenko, O., Yuzvenko, Y., Obukhovsky, V., & Nikonova, V. (2018). Vibration Spectroscopy of Complex Formation in Aqueous Solutions of Isopropanol. Ukrainian Journal of Physics, 63(6), 506. https://doi.org/10.15407/ujpe63.6.506
Section
Physics of liquids and liquid systems, biophysics and medical physics