Vibration Spectroscopy of Complex Formation in Aqueous Solutions of Isopropanol
DOI:
https://doi.org/10.15407/ujpe63.6.506Keywords:
complex formation, ATR FTIR spectroscopy, 2D correlation spectroscopy, multivariate curve resolutionAbstract
The formation of molecular complexes in isopropanol-water solutions is studied by means of vibrational spectroscopy techniques. The ATR FTIR spectra of solutions with different mixing ratios are detected. The multivariate curve resolution of the experimental data set shows that the investigated solution could be treated as a four-component mixture, which contains pure isopropanol, pure water, and two molecular complexes.
References
<li>M.K. Alam, J.B. Callis. Elucidation of species in alcohol-water mixtures using near-IR spectroscopy and multivariate statistics, Anal. Chem. 66, 2293 (1994).
<a href="https://doi.org/10.1021/ac00086a015">https://doi.org/10.1021/ac00086a015</a>
</li>
<li>K. Yoshida, T. Yamaguchi. Low-frequency Raman spectroscopy of aqueous solutions of aliphatic alcohols. Z. Naturforsch. 56a, 529 (2001).
</li>
<li>J. McGregor, R. Li, J. Axel Zeitler, C. D'Agostino, J.H.P. Collins, M.D. Mantle, H. Mayar, J.D. Holbrey, M. Falkowska, T.G.A. Youngs, C. Hardacre, E. Hugh Stitt, L.F. Gladden. Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study. Phys. Chem. Chem. Phys. 17, 30481 (2015).
<a href="https://doi.org/10.1039/C5CP01132A">https://doi.org/10.1039/C5CP01132A</a>
</li>
<li>R. Li, C. D'Agostino, J. McGregor, M.D. Mantle, A. Zeitler, L.F. Gladden. Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 118, 10156 (2014).
<a href="https://doi.org/10.1021/jp502799x">https://doi.org/10.1021/jp502799x</a>
</li>
<li>H.-J. Tong, J.-Y. Yu, Y.-H. Zhang, J.P. Reid. Observation of conformation changes in 1-propanol-water complexes by FTIR spectroscopy. J. Phys. Chem. A 114, 6795 (2010).
<a href="https://doi.org/10.1021/jp912180d">https://doi.org/10.1021/jp912180d</a>
</li>
<li>J.W. Bye, C.L. Freeman, J.D. Howard, G. Herz, J. Mc-Gregor, R.J. Falconer. Analysis of mesoscopic structured 2-propanol/water mixtures using pressure perturbation calorimetry and molecular dynamic simulation. J. Solut. Chem. 46, 175 (2017).
<a href="https://doi.org/10.1007/s10953-016-0554-y">https://doi.org/10.1007/s10953-016-0554-y</a>
</li>
<li>L.A. Bulavin, A.V. Chalyi, O.I. Bilous. Anomalous propagation and scattering of sound in 2-propanol water solution near its singular point. J. Mol. Liq. 235, 24 (2017).
<a href="https://doi.org/10.1016/j.molliq.2017.01.040">https://doi.org/10.1016/j.molliq.2017.01.040</a>
</li>
<li>T. Sato, R. Buchner. Dielectric relaxation spectroscopy of 2-propanol-water mixtures. J. Chem. Phys. 118, 4606 (2003).
<a href="https://doi.org/10.1063/1.1543137">https://doi.org/10.1063/1.1543137</a>
</li>
<li>T. Sato, R. Buchner. The cooperative dynamics of the H-bond system in 2-propanol/water mixtures: Steric hindrance effects of nonpolar head group. J. Chem. Phys. 119, 10789 (2003).
<a href="https://doi.org/10.1063/1.1620996">https://doi.org/10.1063/1.1620996</a>
</li>
<li> D. Peeters, P. Huyskens. Endothermicity of water/alcohol mixtures. J. Mol. Struct. 300, 539 (1993).
<a href="https://doi.org/10.1016/0022-2860(93)87046-C">https://doi.org/10.1016/0022-2860(93)87046-C</a>
</li>
<li> L.A. Bulavin, V.Ya. Gotsulskii, N.P. Malomuzh, V.E. Chechko. Relaxation and equilibrium properties of dilute aqueous solutions of alcohols. Russ. Chem. Bull. 65, 851 (2016).
<a href="https://doi.org/10.1007/s11172-016-1391-2">https://doi.org/10.1007/s11172-016-1391-2</a>
</li>
<li> J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. ? Agren, J. Nordren. Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 91, 157401 (2003).
<a href="https://doi.org/10.1103/PhysRevLett.91.157401">https://doi.org/10.1103/PhysRevLett.91.157401</a>
</li>
<li> T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov, S.V. Patsaeva. Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions. J. Phys. Chem. A, 119, 10806 (2015).
<a href="https://doi.org/10.1021/acs.jpca.5b06678">https://doi.org/10.1021/acs.jpca.5b06678</a>
</li>
<li> V.Ya. Gotsul'skii, N.P. Malomuzh, V.E. Chechko. Features of the temperature and concentration dependences of the contraction of aqueous solutions of ethanol. Russ. J. Phys. Chem. A 87, 1638 (2013).
<a href="https://doi.org/10.1134/S0036024413100087">https://doi.org/10.1134/S0036024413100087</a>
</li>
<li> H. Yilmaz. Excess properties of alcohol-water systems at 298.15 K. Turk. J. Phys. 26, 243 (2002).
</li>
<li> F.-M. Pang, C.-E. Seng, T.-T. Teng, M.H. Ibrahim. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71 (2007).
<a href="https://doi.org/10.1016/j.molliq.2007.01.003">https://doi.org/10.1016/j.molliq.2007.01.003</a>
</li>
<li> A.Yu. Manakov, L.S. Aladko, A.G. Ogienko, A.I. Ancharov. Hydrate formation in the system of n-propanol-water. J. Therm. Anal. Calorim. 111, 885 (2013).
<a href="https://doi.org/10.1007/s10973-012-2246-1">https://doi.org/10.1007/s10973-012-2246-1</a>
</li>
<li> P. Tomza, M.A. Czarnecki. Microheterogeneity in binary mixtures of propyl alcohols with water: NIR spectroscopic, two-dimensional correlation and multivariate curve resolution study. J. Mol. Liq. 209, 115 (2015).
<a href="https://doi.org/10.1016/j.molliq.2015.05.033">https://doi.org/10.1016/j.molliq.2015.05.033</a>
</li>
<li> L.A. Bulavin, V.Ya. Gotsul'skii, N.P. Malomuzh, M.V. Stiranets. Refractometry of water-ethanol solutions near their contraction point. Ukr. J. Phys. 60, 1108 (2015).
<a href="https://doi.org/10.15407/ujpe60.11.1108">https://doi.org/10.15407/ujpe60.11.1108</a>
</li>
<li> K.C. Pratt, W.A. Wakeham. The mutual diffusion coefficient for binary mixtures of wster and the isomers of propanol. Proc. R. Soc. Lond. A. 342, 401 (1975).
<a href="https://doi.org/10.1098/rspa.1975.0031">https://doi.org/10.1098/rspa.1975.0031</a>
</li>
<li> K.R. Harris, T. Goscinska, H.N. Lam. Mutual diffusion coefficients for the systems water-ethanol and water-propan-1-ol at 25?C. J. Chem. Soc. Faraday Trans. 89, 1969 (1993).
<a href="https://doi.org/10.1039/FT9938901969">https://doi.org/10.1039/FT9938901969</a>
</li>
<li> A. Mialdun, V. Yasnou, V. Shevtsova, A. K?oniger, W. K?ohler, D. Alonso de Mezquia, M. M. Bou-Ali. A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of waterisopropanol mixtures. J. Chem. Phys. 136, 244512 (2012).
<a href="https://doi.org/10.1063/1.4730306">https://doi.org/10.1063/1.4730306</a>
</li>
<li> L. Hao, D.G. Leaist. Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J. Chem. Eng. Data 41, 210 (1996).
<a href="https://doi.org/10.1021/je950222q">https://doi.org/10.1021/je950222q</a>
</li>
<li> S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper. Molecular segregation observed in a concentrated alcohol-water solution. Nature 416, 829 (2002).
<a href="https://doi.org/10.1038/416829a">https://doi.org/10.1038/416829a</a>
</li>
<li> J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582 (2012).
<a href="https://doi.org/10.1038/nature11570">https://doi.org/10.1038/nature11570</a>
</li>
<li> J.G. Davis, B.M. Rankin, K.P. Gierszal, D. Ben-Amotz. On the cooperativity of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nature Chem. 5, 796 (2013).
<a href="https://doi.org/10.1038/nchem.1716">https://doi.org/10.1038/nchem.1716</a>
</li>
<li> V.V. Obukhovsky, V.V. Nikonova. Interdiffusion in water solutions of ethyl alcohol. Ukr. J. Phys. 55, 891 (2010).
</li>
<li> K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev. Stationary diffusion in the membrane systems with the ongoing reversible chemical reactions. J. Mol. Liq. 120, 71 (2005).
<a href="https://doi.org/10.1016/j.molliq.2004.07.038">https://doi.org/10.1016/j.molliq.2004.07.038</a>
</li>
<li> H.A. Zarei, S. Shahvarpour. Volumetric properties of binary and ternary liquid mixtures of 1-propanol (1) + 2-propanol (2) + water (3) at different temperatures and ambient pressure (81.5 kPa). J. Chem. Eng. Data 53, 1660 (2008).
<a href="https://doi.org/10.1021/je800158z">https://doi.org/10.1021/je800158z</a>
</li>
<li> J.-W. Shin, E.R. Bernstein. Experimental and theoretical studies of isolated neutral and ionic 2-propanol and their clusters. J. Chem. Phys. 130, 214306 (2009).
<a href="https://doi.org/10.1063/1.3148378">https://doi.org/10.1063/1.3148378</a>
</li>
<li> I.Yu. Doroshenko. Matrix isolation study of the formation of methanol cluster structures in the spectral region of C-O and O-H stretch vibrations. Low Temp. Phys. 37, 604 (2011).
<a href="https://doi.org/10.1063/1.3643482">https://doi.org/10.1063/1.3643482</a>
</li>
<li> G. Matisz, A.-M. Kelterer, W.M.F. Fabian, S. Kuns’agi-M’at’e. Application of the quantum cluster equilibrium (QCE) model for the liquid phase of primary alcohols using B3LYP and B3LYP-D DFT methods. J. Phys. Chem. B 115, 3936 (2011).
<a href="https://doi.org/10.1021/jp109950h">https://doi.org/10.1021/jp109950h</a>
</li>
<li> M. Starzak, M. Mathlouthi. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chem. 82, 3 (2003).
<a href="https://doi.org/10.1016/S0308-8146(02)00584-8">https://doi.org/10.1016/S0308-8146(02)00584-8</a>
</li>
<li> H. Cybulski, J. Sadlej. On the calculation of the vibrational Raman spectra of small water clusters. Chem. Phys. 342, 163 (2007).
<a href="https://doi.org/10.1016/j.chemphys.2007.09.058">https://doi.org/10.1016/j.chemphys.2007.09.058</a>
</li>
<li> S.R. Gadre, S.D. Yeole, N. Sahu. Quantum cluster investigations of molecular clusters. Chem. Rev. 114, 12132 (2014).
<a href="https://doi.org/10.1021/cr4006632">https://doi.org/10.1021/cr4006632</a>
</li>
<li> F. Weinhold. Quantum cluster equilibrium theory of liquids: Illustrative applications to water. J. Chem. Phys. 109, 373 (1998).
<a href="https://doi.org/10.1063/1.476574">https://doi.org/10.1063/1.476574</a>
</li>
<li> G. Matisz, A.-M. Kelterer, W.M.F. Fabian, S. Kuns’agi-M’at’e. Structural properties of methanol-water binary mixtures within the quantum cluster equilibrium model. Phys. Chem. Chem. Phys. 17, 8467 (2015).
<a href="https://doi.org/10.1039/C4CP05836D">https://doi.org/10.1039/C4CP05836D</a>
</li>
<li> H.F. Shurvel. Spectra-structure correlations in the mid- and far-infrared. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).
</li>
<li> L.G. Weyer, S.-C. Lo. Spectra-structure correlations in the near-infrared. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).
</li>
<li> H.G.M. Edwards. Spectra-structure correlations in Raman spectroscopy. In Handbook of Vibrational Spectroscopy. Edited by J.M. Chalmers, P.R. Griffiths (Wiley, 2002).
</li>
<li> A. de Juan, R. Tauler. Multivariate curve resolution-alternating least squares for spectroscopic data. In Resolving Spectral Mixtures with Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging (Elsevier, 2016).
<a href="https://doi.org/10.1016/B978-0-444-63638-6.00002-4">https://doi.org/10.1016/B978-0-444-63638-6.00002-4</a>
</li>
<li> O. Ilchenko, V. Obukhovsky, V. Lemeshko, V. Nikonova, A. Kutsyk. Raman spectroscopy investigations of complexation processes in water-methanol solutions. Bulletin of T. Shevchenko Nat. Univ. of Kyiv. Radiophys. Electr. 17, 34 (2012).
</li>
<li> O.O. Ilchenko, Y.V. Pilgun, A.S. Reynt, A.M. Kutsyk. NNLS and MCR-ALS decomposition of Raman and FTIR spectra of multicomponent liquid solutions. Ukr. J. Phys. 61, 519 (2016).
<a href="https://doi.org/10.15407/ujpe61.06.0519">https://doi.org/10.15407/ujpe61.06.0519</a>
</li>
<li> Q. Li, N. Wang, Q. Zhou, S. Sun, Z. Yu. Excess infrared absorption spectroscopy and its applications in the studies of hydrogen bonds in alcohol-containing binary mixtures. Appl. Spec. 62, 166 (2008).
<a href="https://doi.org/10.1366/000370208783575663">https://doi.org/10.1366/000370208783575663</a>
</li>
<li> O. Ilchehko, V. Nikonova, A. Kutsyk, V. Obukhovsky. Quantitative analysis of complex formation in acetonechloroform and ethyl acetate-cyclohexane solutions. Ukr. J. Phys. 59, 268 (2014).
<a href="https://doi.org/10.15407/ujpe59.03.0268">https://doi.org/10.15407/ujpe59.03.0268</a>
</li>
<li> O.O. Ilchenko, A.M. Kutsyk, Y.V. Pilgun, V.V. Obukhovsky, V.V. Nikonova. Formation of molecular complexes in liquid benzene-chloroform mixtures examined by mid-IR 2D correlation spectroscopy and multivariate curve resolution. Ukr. J. Phys. 61, 508 (2016).
<a href="https://doi.org/10.15407/ujpe61.06.0508">https://doi.org/10.15407/ujpe61.06.0508</a>
</li>
<li> A. Kutsyk, O. Ilchenko, Y. Pilgun, V. Obukhovsky, V. Nikonova. Complex formation in liquid diethyl ether-chloroform mixtures examined by 2D correlation mid-IR spectroscopy. J. Mol. Struct. 1124, 117 (2016).
<a href="https://doi.org/10.1016/j.molstruc.2016.03.035">https://doi.org/10.1016/j.molstruc.2016.03.035</a>
</li>
<li> J. Jaumot, A. de Juan, R. Tauler.MCR-ALS GUI 2.0: New features and applications. Chem. Intell. Lab. Sys. 140, 1 (2015).
<a href="https://doi.org/10.1016/j.chemolab.2014.10.003">https://doi.org/10.1016/j.chemolab.2014.10.003</a>
</li>
<li> S. Kucheryavskiy, W. Windig, A. Bogomolov. Spectral unmixing using the concept of pure variables. In Resolving Spectral Mixtures with Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging (Elsevier, 2016).
<a href="https://doi.org/10.1016/B978-0-444-63638-6.00003-6">https://doi.org/10.1016/B978-0-444-63638-6.00003-6</a>
</li>
<li> K.H. Esbensen, P. Geladi. Principal component analysis: concept, geometrical interpretation, mathematical background, algorithms, history, practice. In Comprehensive Chemometrics (Elsevier, 2009).
<a href="https://doi.org/10.1016/B978-044452701-1.00043-0">https://doi.org/10.1016/B978-044452701-1.00043-0</a>
</li>
<li> I.Yu. Doroshenko. Spectroscopic study of the n-hexanol cluster structure, isolated in an argon matrix. Low Temp. Phys. 43, 732 (2017).
<a href="https://doi.org/10.1063/1.4985983">https://doi.org/10.1063/1.4985983</a>
</li>
<li> I. Doroshenko, V. Balevicius, G. Pitsevich, K. Aidas, V. Sablinskas, V. Pogorelov. FTIR/PCA study of propanol in argon matrix: The initial stage of clustering and conformational transitions. Low Temp. Phys. 40, 1077 (2014).
<a href="https://doi.org/10.1063/1.4902228">https://doi.org/10.1063/1.4902228</a>
</li>
<li> V.Ye. Pogorelov, I.Yu. Doroshenko, Vibrational spectra of water clusters, trapped in low temperature matrices. Low Temp. Phys. 42, 1163 (2016).
<a href="https://doi.org/10.1063/1.4973401">https://doi.org/10.1063/1.4973401</a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.