FTIR and DSC Studies of Binary Mixtures of Long-Chain Aliphatic Compounds: Lauric Acid – Cetyl-trimethylammonium Bromide

Authors

  • T. Gavrilko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. Gnatyuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Styopkin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N. Shcherban L.V. Pisarzhevsky Institute of Physical Chemistry
  • J. Baran Institute of Low Temperature and Structure Research, PAS
  • M. Drozd Institute of Low Temperature and Structure Research, PAS

DOI:

https://doi.org/10.15407/ujpe63.5.413

Keywords:

catanionic complexes, lauric acid, CTAB, DSC, FTIR

Abstract

Structural and thermal properties of a solid-state binary mixture of long-chain cationic and anionic surfactants (so-called catanionic complexes) composed of cetyltrimethyl-ammonium bromide, [H3C–(CH2)15–N+(CH3)3]Br−(CTAB), and saturated fatty acid (FA), CH3(CH2)12COOH (lauric acid, kC12), are studied. To clarify the effect of intermolecular interactions on the crystalline structure and phase transitions in this class of supramolecular compounds, the 1 : 1 kC12-CTAB binary mixture is investigated by means of X-ray diffraction, differential scanning calorimetry (DSC), and temperature-variable Fourier transform infrared spectroscopy (FTIR). Based on the comparison of the obtained results with those of other CTAB-FA binary mixtures with different alkyl chain length mismatches, the possible molecular packing in the crystal phase of CTAB-FA complexes and the mechanism of successive phase transitions in the condensed state are proposed.

References

<ol>
<li>P. Jokela, B. Jonsson, A. Khan. Phase equilibria of catanionic surfactant-water systems. J. Phys. Chem. 91, 13291 (1987).
<a href="https://doi.org/10.1021/j100296a037">https://doi.org/10.1021/j100296a037</a>
</li>
<li>E. Marques, A. Khan,M. Miguel, B. Lindman. Self-assembly in mixtures of a cationic and an anionic surfactant: The sodium dodecyl sulfate-didodecyldimethylammonium bromide-water system. J. Phys. Chem. 97, 4729 (1993).
<a href="https://doi.org/10.1021/j100120a028">https://doi.org/10.1021/j100120a028</a>
</li>
<li>P.A. Hassan, S.R. Raghavan, E.W. Kaler. Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 18 (7), 2543 (2002).
<a href="https://doi.org/10.1021/la011435i">https://doi.org/10.1021/la011435i</a>
</li>
<li>N. Vlachy, A. Renoncourt, M. Drechsler, J.-M. Verbavatz, D. Touraud, W. Kunz. Blastulae aggregates: New intermediate structures in the micelle-to-vesicle transition of catanionic systems. J. Colloid and Interface Sci. 320 (1), 360 (2008).
<a href="https://doi.org/10.1016/j.jcis.2007.12.034">https://doi.org/10.1016/j.jcis.2007.12.034</a>
</li>
<li>E.W. Kaler, K.L. Herrington, K. Marthy, J.A. Zasadzink. Phase behavior and structures of mixtures of anionic and cationic surfactants. J. Phys. Chem. 96 (16), 6698 (1992).
<a href="https://doi.org/10.1021/j100195a033">https://doi.org/10.1021/j100195a033</a>
</li>
<li>N. Dew, T. Bramer, K. Edsman. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. J. Colloid and Interface Sci. 323 (2), 386 (2008).
<a href="https://doi.org/10.1016/j.jcis.2008.04.008">https://doi.org/10.1016/j.jcis.2008.04.008</a>
</li>
<li>N. Hassan, J.M. Ruso, A. Pi?neiro. Hydrogenated/fluorinated catanionic surfactants as potential templates for nanostructure design. Langmuir 27 (16), 9719 (2011).
<a href="https://doi.org/10.1021/la2019346">https://doi.org/10.1021/la2019346</a>
</li>
<li>D. Ramimoghadam, M.Z. Bin Hussein, Y.H. Taufiq-Yap. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 13 (10), 13275 (2012).
<a href="https://doi.org/10.3390/ijms131013275">https://doi.org/10.3390/ijms131013275</a>
</li>
<li>H.H. Mantsch, S.F. Weng, P.W. Yang, H.H. Eysel. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers. J. Molec. Structure 324 (1–2), 133 (1994).
<a href="https://doi.org/10.1016/0022-2860(93)08234-U">https://doi.org/10.1016/0022-2860(93)08234-U</a>
</li>
<li> M. Antonietti. Surfactants for novel templating applications. Current Opin. Colloid Interf. Sci. 6 (3), 244(2001).
<a href="https://doi.org/10.1016/S1359-0294(01)00089-9">https://doi.org/10.1016/S1359-0294(01)00089-9</a>
</li>
<li> Organized Monolayers and Assemblies: Structure, Processes and Function. Edited by D. Mobius, R. Miller (Elsevier Science, 2002).
</li>
<li> T.A. Gavrilko, V.I. Styopkin, T.V. Bezrodna, G.O. Puchkovska, J. Baran, M. Drozd. Molecular dynamics and phase transitions behavior of binary mixtures of fatty acids and cetyltrimethylammonium bromide as studied via davydov splitting of molecular vibrational modes. Ukr. J. Phys. 58 (7), 636 (2013).
<a href="https://doi.org/10.15407/ujpe58.07.0636">https://doi.org/10.15407/ujpe58.07.0636</a>
</li>
<li> J. Baran, M. Drozd, T.A. Gavrilko, V.I. Styopkin. Structure, molecular dynamics, and thermotropic properties of stearic acid-CTAB catanionic surfactants with different molar ratios. Ukr. J. Phys. 59 (3), 303 (2014).
<a href="https://doi.org/10.15407/ujpe59.03.0303">https://doi.org/10.15407/ujpe59.03.0303</a>
</li>
<li> E. von Sydow. On the structure of crystal form A of lauric acid. Acta Chem. Scand. 10 (1), 1 (1956).
<a href="https://doi.org/10.3891/acta.chem.scand.10-0001">https://doi.org/10.3891/acta.chem.scand.10-0001</a>
</li>
<li> V. Toma?sic, S. Popovic, N. Filipovic-Vincekovic. Solid state transitions of asymmetric catanionic surfactants. J. Colloid and Interface Sci. 215 (2), 280 (1999).
<a href="https://doi.org/10.1006/jcis.1999.6234">https://doi.org/10.1006/jcis.1999.6234</a>
</li>
<li> M.L. Lynch, F.Wireko, M. Tarek, M. Klein. Intermolecular interactions and the structure of fatty acid-soap crystals. J. Phys. Chem. B 105 (2), 552 (2001).
<a href="https://doi.org/10.1021/jp002602a">https://doi.org/10.1021/jp002602a</a>
</li>
<li> N. Filipovic-Vincekovic, I. Pucic, S. Popovic, V. Toma?sic, D. Te?zak. Solid-phase transitions of catanionic surfactants. J. Colloid and Interface Sci. 188 (2), 396 (1997).
<a href="https://doi.org/10.1006/jcis.1997.4767">https://doi.org/10.1006/jcis.1997.4767</a>
</li>
<li> K. Iwamoto, Y. Ohnuki, K. Sawada, M. Seno. Solid-solid phase transitions of long-chain n-alkyltrimethylammonium halides. Mol. Cryst. Liq. Cryst. 73 (1–2), 95 (1981).
<a href="https://doi.org/10.1080/00268948108076264">https://doi.org/10.1080/00268948108076264</a>
</li>
<li> G.D. Saraiva, C.E.S. Nogueira, P.T.C. Freire, F.F. Sousa, J.H. Silva, A.M.R. Teixeira, J. Mendes Filho. Temperature-dependent vibrational spectroscopic study and DFT calculations of the sorbic acid. Spectrochimica Acta Part A 137, 1409 (2015).
<a href="https://doi.org/10.1016/j.saa.2014.08.142">https://doi.org/10.1016/j.saa.2014.08.142</a>
</li>
<li> F.F. Sousa, P.T.C. Freire, A.S. Menezes, G.S. Pinheiro, L.P. Cardoso, Jr.P. Alcantara, S.G.C. Moreira, F.E.A. Melo, J. Mendes Filho, G.D. Saraiva. Low-temperature phase transformation studies in the stearic acid: C form. Spectrochimica Acta Part A 148 (9), 280 (2015).
<a href="https://doi.org/10.1016/j.saa.2015.04.003">https://doi.org/10.1016/j.saa.2015.04.003</a>
</li>
<li> R.G. Snyder, S.L. Hsu, S. Krimm. Vibrational spectra in the CH stretching region and the structure of the polymethylene chain. Spectrochimica Acta A 34 (4), 395(1978).
<a href="https://doi.org/10.1016/0584-8539(78)80167-6">https://doi.org/10.1016/0584-8539(78)80167-6</a>
</li>
<li> L.J. Bellami. The Infra-Red Spectra of Complex Molecules, Vol. 1 (Wiley, 1975).
<a href="https://doi.org/10.1007/978-94-011-6017-9">https://doi.org/10.1007/978-94-011-6017-9</a>
</li>
<li> G.O. Puchkovska. Manifestation of structure, dynamics, and polymorphism in vibrational spectra of molecular crystals. Thesis of the Doctoral Dissertation in Phys. and Math. (Kyiv, 1988).
</li>
<li> G.O. Puchkovska, S.P. Makarenko, V.D. Danchuk, A.P. Kravchuk. Temperature study of resonance intermolecular interaction in normal long-chain carboxylic acid crystals using IR absorption spectra. J. Molec. Struct. 744–747, 53 (2005).
<a href="https://doi.org/10.1016/j.molstruc.2005.01.002">https://doi.org/10.1016/j.molstruc.2005.01.002</a>
</li>
<li> E.B. Sirota, H.E. King Jr., D.M. Singer, H.S. Shao. Rotator phases of the normal alkanes: An X-ray scattering study. J. Chem. Phys. 98 (7), 5809 (1993).
<a href="https://doi.org/10.1063/1.464874">https://doi.org/10.1063/1.464874</a>
</li>
<li> C. Sun, M.J. Bojdys, S.M. Clarke, L.D. Harper, A. Jefferson, M.A. Castro, S. Medina. Bulk and adsorbed monolayer phase behavior of binary mixtures of undecanoic acid and undecylamine: Catanionic monolayers. Langmuir 27 (7), 3626 (2011).
<a href="https://doi.org/10.1021/la1048198">https://doi.org/10.1021/la1048198</a></li>

Downloads

Published

2018-07-03

How to Cite

Gavrilko, T., Gnatyuk, I., Styopkin, V., Shcherban, N., Baran, J., & Drozd, M. (2018). FTIR and DSC Studies of Binary Mixtures of Long-Chain Aliphatic Compounds: Lauric Acid – Cetyl-trimethylammonium Bromide. Ukrainian Journal of Physics, 63(5), 413. https://doi.org/10.15407/ujpe63.5.413

Issue

Section

Structure of materials

Most read articles by the same author(s)