Spectroscopic Features of Raman Gain Profiles in Single-Mode Fibers Based on Silica Glass

  • I. V. Serdeha Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems
  • V. I. Grygoruk Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems
  • G. S. Felinskyi Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems
Keywords: optical amplification, Raman gain, fiber Raman lasers, fiber Raman amplifiers

Abstract

The spectroscopic analysis of the frequency distribution of the amplification of optical radiation due to the Raman effect (Raman gain profile) in single-mode fibers based on silica glass has been carried out in the region of Stokes frequency shifts from 0 to 1400 cm−1. The Raman gain profiles are determined from the experimental spectra of spontaneous scattering for widespread fibers, namely for pure SiO2, GeO2, P2O5, and TiO2 doped fibers. The analytic expressions of the Raman gain profiles are given. They are obtained, by using the Gaussian decomposition by means of 11–12 modes, and the experimental profile is approximated with an accuracy of not less than 0.3%. The decomposition results are analyzed in terms of the fundamental oscillatory dynamics of molecular nanocomplexes in amorphous glass, as well as in the application aspect of the modeling of photonics devices. Examples of the proposed method applications are presented for the analysis of noise parameters of the fiber Raman amplifiers and for the generation bandwidth in fiber Raman lasers.

References


  1. W. Shi, Q. Fang, X. Zhu, R.A. Norwood, N. Peyghambarian. Fiber lasers and their applications. Appl. Opt. 53, 6554 (2014).
    https://doi.org/10.1364/AO.53.006554

  2. D.J. Richardson, J. Nilsson, W.A. Clarkson. High-power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, 63 (2010).
    https://doi.org/10.1364/JOSAB.27.000B63

  3. M.N. Zervas, C.A. Codemard. High power fiber lasers:A review. IEEE J. Sel.Top.QuantumElectron. 20, 219 (2014).
    https://doi.org/10.1109/JSTQE.2014.2321279

  4. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, Z. Liu. High-power fiber lasers based on tandem pumping. J. Opt. Soc. Am. B 34, A29 (2017).
    https://doi.org/10.1364/JOSAB.34.000A29

  5. P. Ma, H. Zhang, L. Huang, X. Wang, P. Zhou, Z. Liu. Kilowatt-level near-diffraction-limited and linear-polarized ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism. Opt. Express 23 (20), 26499 (2015).
    https://doi.org/10.1364/OE.23.026499

  6. Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, M. Gong. Bidirectional pumped high power Raman fiber laser. Opt. Express 24 (6), 6758 (2016).
    https://doi.org/10.1364/OE.24.006758

  7. Y. Feng, L.R. Taylor, D.B. Calia. 150 W highly-efficient Raman fiber laser. Opt. Express 17 (26), 23678 (2009).
    https://doi.org/10.1364/OE.17.023678

  8. E.M. Dianov, A.M. Prokhorov. Medium-power CWRaman fiber lasers. IEEE J. Sel. Top. Quant. Electron. 6, 1022 (2000).
    https://doi.org/10.1109/2944.902151

  9. E.M. Dianov. Advances in Raman Fibers. J. Lightwave Techn. 20, 1457 (2002).
    https://doi.org/10.1109/JLT.2002.800263

  10. P.A. Korotkov, G.S. Felinskyi. Fiber SRS lasers with continuous action. Ukr. Fiz. Zh. Oglyady 4 (1), 36 (2007).

  11. J.Bromage,K.Rottwitt,M.E. Lines.Amethod to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photon.Techn. Lett. 14, 24 (2002).
    https://doi.org/10.1109/68.974149

  12. M.D. Mermelstein, C. Horn, S. Radic, C. Headley. Six wavelength Raman fiber laser for C- and L-band Raman amplification and dynamic gain flattening. Electron. Lett. 38, 636 (2002).
    https://doi.org/10.1049/el:20020433

  13. P.A. Korotkov, G.S. Felinskyi. SRS amplification of light in single-mode quartz fibers. Ukr. Fiz. Zh. Oglyady 6 (2), 103 (2009).

  14. L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng. Kilowatt ytterbium-Raman fiber laser. Opt. Express 22 (15), 18483 (2014).
    https://doi.org/10.1364/OE.22.018483

  15. G.S. Felinskyi, P.A. Korotkov. Raman threshold and optical gain bandwidth in silica fibers. Semicond. Phys. Quant. Electr. Optoelectr. 11, 360 (2008).

  16. V.I. Grygoruk, P.A. Korotkov, G.S. Felinskyi. Nonlinear and Laser Processes in Optical Fibers. (Kyiv Univ., 2009) (in Ukrainian).

  17. L.D. Landau, E.M. Lifshitz, Mechanics (Butterworth Heinemann, 2001).

  18. R.H. Stolen, C. Lee, R.K. Jain. Development of the stimulated Raman spectrum in single-mode fibers. J. Opt. Soc. Am. B 1, 652 (1984).
    https://doi.org/10.1364/JOSAB.1.000652

  19. R.H. Stolen, M.A. Bosch. Low frequency and low-temperature Raman scattering in silica fibers. Phys. Rev. Lett. 48, 805 (1982).
    https://doi.org/10.1103/PhysRevLett.48.805

  20. P. Voss, Y. Su, P. Kumar, M. Vasilyev. Photon statistics of a single mode of spontaneous Raman scattering in a distributed Raman amplifiers. In Opt. Fiber Commun. Conf. (IEEE, 2001), p. WDD23.

  21. G.S. Felinskyi, I.V. Serdeha, V.I. Grygoruk. TiO2-doped singlemode fiber as active medium for Raman lasers. In Proc. Int. Symp. on Advanced Material Research, ISAMR'2017, Seoul, Korea, March, 17–19 (2017), p. 109.

  22. G.S. Felinskyi, I.M. Kudin, I.V. Serdeha. Lasing band and Raman gain threshold in TiO2 doped single-mode fiber. In Proc. 2017 IEEE 37th Int. Conf. on Electronics and Nanotechnology (ELNANO), April 18–20, Kyiv, Ukraine (2017), p. 108.

  23. G.E. Walrafen, P.N. Krishnan. Model analysis of the Raman spectrum from fused silica optical fibers. Appl. Opt. 21 (3), 359 (1982).
    https://doi.org/10.1364/AO.21.000359

  24. K. Rottwitt, J. Bromage, A.J. Stentz et al. Scaling of the Raman gain coefficient: applications to germanosilicate fibers. J. Lightwave Technol. 21 (7), 1652 (2003).
    https://doi.org/10.1109/JLT.2003.814386

  25. K.X. Liu, E. Garmire. Understanding the formation of the SRS Stokes spectrum in fused silica fibers. IEEE J. Quant. Electron. 27 (4), 1022 (1991).
    https://doi.org/10.1109/3.83337

  26. F.Di Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, F. Forghieri. All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30 ? 22 dB of TW-RS fiber. IEEE Photon. Technol. Lett. 15 (2), 314 (2003).
    https://doi.org/10.1109/LPT.2002.806887

  27. K. Fukuchi, T. Kasamatsu, M. Morie et al. 10.92-Tbit/s (273 ? 40 Gb/s) Tripleband/ Ultra-dense WDM optical-repeated transmission experiment. In Opt Fiber Commun. Conf. (IEEE, 2001), p. PD24.

  28. G.S. Felinskyi. Noise measurement of the backward pumped distributed fiber Raman amplifier. Photoelectronics 18, 16 (2009).

  29. G.S. Felinskyi, M. Dyriv. Signal-to-noise analysis in a counter-pumped fiber Raman amplifier. Optica Applicata 44 (4), 493 (2014).

  30. G.S. Felinskyi, M.I. Reznikov, S. Fedorchuk. Amplified and spontaneous stokes noise features in a singlemode silica fiber. In Proc. 2018 IEEE 38th Int. Conf. on Electronics and Nanotechnology (ELNANO), April 24–26, Kyiv, Ukraine (2018), p. 201.

  31. G.S. Felinskyi, M. Dyriv. Noise suppression phenomenon in fiber Raman amplifier. Measur. Sci. Rev. 15 (3), 107 (2015).
    https://doi.org/10.1515/msr-2015-0016

  32. G.S. Felinskyi, M.Y. Dyriv. Noise gain features of fiber Raman amplifier. Adv. OptoElectron. 2016, 1 (2016).
    https://doi.org/10.1155/2016/5843636

  33. G.S. Felinskyi, I.V. Serdeha, V.I. Grygoruk. TiO2-doped single-mode fiber as active material for Raman lasers. Key Engin. Mater. 753, 173 (2017).
    https://doi.org/10.4028/www.scientific.net/KEM.753.173

  34. I.V. Serdeha, G.S. Felinskyi, V.I. Grygoruk. Spectroscopic analysis of Raman lasing features in P2O5 doped single-mode fiber. In Proc. 2018 IEEE 38th Int. Conf. on Electronics and Nanotechnology (ELNANO), April 24–26, Kyiv, Ukraine (2018), p. 209.
Published
2018-09-07
How to Cite
Serdeha, I., Grygoruk, V., & Felinskyi, G. (2018). Spectroscopic Features of Raman Gain Profiles in Single-Mode Fibers Based on Silica Glass. Ukrainian Journal of Physics, 63(8), 683. https://doi.org/10.15407/ujpe63.8.683
Section
Optics, atoms and molecules