Fabrication of CdS/CdTe Solar Cells by Quasiclosed Space Technology and Research of Their Properties
DOI:
https://doi.org/10.15407/ujpe63.2.156Keywords:
vacuum quasiclosed space technology, CdS/CdTe solar cell, CuxS ohmic contact, Mo, ZnO, ZnO:Al conducting filmsAbstract
A quasiclosed space technology has been developed for the deposition of CdS and CdTe layers, while fabricating solar cells (SCs). Technological factors affecting the crystal lattice structure, the optical band gap width, and the conductivity in the CdS and CdTe layers are studied and analyzed. A technology to produce an ohmic contact with p-CdTe, by using the degenerate CuxS semiconductor, is proposed. The characteristics of SCs fabricated on substrates covered with various conducting films (Mo, ZnO, ZnO:Al) are analyzed. The measurement results of light and dark voltage-current characteristics testify to the better characteristics of ZnO and ZnO:Al films obtained by the atomic layer deposition from the viewpoint of their application in SCs. The optimum thicknesses of the CdS (67 nm), CdTe (about 1 /um), and CuxS (30 nm) layers, at which the best SC efficiency (n = 1.75÷1.89%) is obtained, are determined. The application of thin films in SC structures is shown to improve the characteristics of the latter.
References
<li>T.V. Semikina, S.V. Mamykin, G.I. Sheremet, L.N. Shmyreva. ZnO thin films obtained by atomic layer deposition as a material for photovoltaics. Ukr. J. Phys. 61, 732 (2016).
<a href="https://doi.org/10.15407/ujpe61.08.0732">https://doi.org/10.15407/ujpe61.08.0732</a>
</li>
<li>M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3 (2017).
<a href="https://doi.org/10.1002/pip.2855">https://doi.org/10.1002/pip.2855</a>
</li>
<li>A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari. Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Ch. 52, 247 (2006).
<a href="https://doi.org/10.1016/j.pcrysgrow.2006.09.001">https://doi.org/10.1016/j.pcrysgrow.2006.09.001</a>
</li>
<li>L.L. Kazmerski. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. J. Elect. Spectrosc. Rel. Phenom. 150, 105 (2006).
<a href="https://doi.org/10.1016/j.elspec.2005.09.004">https://doi.org/10.1016/j.elspec.2005.09.004</a>
</li>
<li>A.G. Aberle. Thin-film solar cells. Thin Solid Films 517, 4706 (2009).
<a href="https://doi.org/10.1016/j.tsf.2009.03.056">https://doi.org/10.1016/j.tsf.2009.03.056</a>
</li>
<li>R.W. Miles, K.M. Hynes, I. Forbes. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Ch. 51, 1 (2005).
<a href="https://doi.org/10.1016/j.pcrysgrow.2005.10.002">https://doi.org/10.1016/j.pcrysgrow.2005.10.002</a>
</li>
<li>A. Jager-Waldau. Status of thin film solar cells in research, production and the market. Sol. Energy 77, 667 (2004).
<a href="https://doi.org/10.1016/j.solener.2004.08.020">https://doi.org/10.1016/j.solener.2004.08.020</a>
</li>
<li>T.L. Chu, S.S. Chu. Thin film II–VI photovoltaics. Sol. St. Electron. 38, 533 (1995).
<a href="https://doi.org/10.1016/0038-1101(94)00203-R">https://doi.org/10.1016/0038-1101(94)00203-R</a>
</li>
<li>A.D. Compaan. Photovoltaics: Clean power for the 21st century. Sol. Energy Mat. Sol. Cells 90, 2170 (2006).
<a href="https://doi.org/10.1016/j.solmat.2006.02.017">https://doi.org/10.1016/j.solmat.2006.02.017</a>
</li>
<li> A. Morales-Acevedo. Can we improve the record efficiency of CdS/CdTe solar cells? Sol. Energy Mat. Sol. Cells 90, 2213 (2006).
<a href="https://doi.org/10.1016/j.solmat.2006.02.019">https://doi.org/10.1016/j.solmat.2006.02.019</a>
</li>
<li> T.V. Semikina, S.V. Mamykin, M. Godlewski, G. Luka, R. Pietruszka, K. Kopalko, T.A. Krajewski, S.S. Gieraltowska, J. Wachnicki, L.N. Shmyryeva. ZnO as a conductive layer prepared by ALD for solar cells based on n-CdS/n-CdTe/p-Cu1.8S heterostructure. J. Semicond. Phys. Quant. Electron. Optoelectron. 16, 111 (2013).
<a href="https://doi.org/10.15407/spqeo16.02.111">https://doi.org/10.15407/spqeo16.02.111</a>
</li>
<li> T.V. Semikina. Atomic layer deposition as a nanotechnological method for producing functional materials: A review. Uch. Zapis. Tavrich. Nat. Univ. Ser. Fiz. 22, No. 1, 116 (2009) (in Russian).
</li>
<li> C.G. Granqvist. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mat. Sol. Cells 91, 1529 (2007).
<a href="https://doi.org/10.1016/j.solmat.2007.04.031">https://doi.org/10.1016/j.solmat.2007.04.031</a>
</li>
<li> X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875 (2003).
<a href="https://doi.org/10.1063/1.1605805">https://doi.org/10.1063/1.1605805</a>
</li>
<li> M. Godlewski, E. Guziewicz, K. Kopalko, G. Luka, M.I. Lukasiewicz, T. Krajewski, B.S. Witkowski, S. Gieraltowska. Zinc oxide for electronic, photovoltaic and optoelectronic applications. Low Temp. Phys. 37, 235 (2011).
<a href="https://doi.org/10.1063/1.3570930">https://doi.org/10.1063/1.3570930</a>
</li>
<li> N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, V. Osinniy. Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition. Appl. Phys. Lett. 92, 023502 (2008).
<a href="https://doi.org/10.1063/1.2830940">https://doi.org/10.1063/1.2830940</a>
</li>
<li> S. Gieraltowska, L. Wachnicki, B.S. Witkowski, M. Godlewski, E. Guziewicz. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520, 4694 (2012).
<a href="https://doi.org/10.1016/j.tsf.2011.10.151">https://doi.org/10.1016/j.tsf.2011.10.151</a>
</li>
<li> T.A. Krajewski, G. Luka, L. Wachnicki, A.J. Zakrewski, B.S. Witkowski, M.I. Lukasiewicz, P. Kruszewski, E. Lusakowska, R. Jakiela, M. Godlewski, E. Guziewicz. Electrical parameters of ZnO films and ZnO-based junctions obtained by atomic layer deposition. Semicond. Sci. Technol. 26, 085013 (2011).
<a href="https://doi.org/10.1088/0268-1242/26/8/085013">https://doi.org/10.1088/0268-1242/26/8/085013</a>
</li>
<li> T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I.A. Kowalik, A.Wojcik-Glodowska, M. Lukasiewicz, K. Koplako, V. Osinniy, M. Guziewicz. The influence of growth temperature and precursors' doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectr. J. 40, 293 (2009).
<a href="https://doi.org/10.1016/j.mejo.2008.07.053">https://doi.org/10.1016/j.mejo.2008.07.053</a>
</li>
<li> G. Luka, M. Godlewski, E. Guziewicz, P. Stahira, V. Cherpak, D. Volonyuk. ZnO films grown by atomic layer deposition for organic electronics. Semicond. Sci. Technol. 27, 074006 (2012).
<a href="https://doi.org/10.1088/0268-1242/27/7/074006">https://doi.org/10.1088/0268-1242/27/7/074006</a>
</li>
<li> N.V. Yaroshenko, T.V. Semikina, Yu.N. Bobrenko, W. Pashkovich, R. Minikaev, L.N. Shmyreva, V.N. Komashchenko. Preparation of thin-film heterostructures by the hot-wall method and the study of current transfer mechanisms. Elektron. Svyaz 2, 28 (2011) (in Russian).
</li>
<li> L.A. Kosyachenko, E.V. Grushko. Prospects for the use of thin-film cadmium telluride in solar energetics. Ukr. Fiz. Zh. Ogl. 7, 3 (2012) (in Ukrainian).
</li>
<li> A.Y. Jaber, S.N. Alamri, M.S. Aida, M. Benghanem, A.A. Abdelaziz. Influence of substrate temperature on thermally evaporated CdS thin films properties. J. Alloy. Compd. 529, 63 (2012).
<a href="https://doi.org/10.1016/j.jallcom.2012.03.093">https://doi.org/10.1016/j.jallcom.2012.03.093</a>
</li>
<li> H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007) [ISBN: 9780470016084].
<a href="https://doi.org/10.1002/9780470060193">https://doi.org/10.1002/9780470060193</a>
</li>
<li> N. Dmitruk, L. D’ozsa, S. Mamykin, O. Kondratenko, G. Moln’ar. Effect of annealing on optical properties of thin films with B-FeSi 2 quantum dots. Vacuum 84, 238 (2009).
<a href="https://doi.org/10.1016/j.vacuum.2009.05.008">https://doi.org/10.1016/j.vacuum.2009.05.008</a>
</li>
<li> S.Yu. Pavelets, Yu.M. Bobrenko, A.M. Pavelets, M.M. Kretulis. High effective surface-barrier sensors with low resistive surface layers. Optoelektron. Poluprovodn. Tekhn. 37, 112 (2002) (in Russian).
</li>
<li> Yu.N.Bobrenko, A.M.Pavelets, S.Yu.Pavelets, V.M.Tkachenko. Short-wave photosensitivity of surface-barrier structures based on degenerate semiconductor-semiconductor junctions. Pis'ma Zh. Tekhn. Fiz. 20, No. 12, 9 (1994) (in Russian).
</li>
<li> S.A. Mahmoud, A.A. Ibrahim, A.S. Riad. Physical properties of thermal coating CdS thin films using a modified evaporation source. Thin Solid Films 372, 144 (2000).
<a href="https://doi.org/10.1016/S0040-6090(00)01053-1">https://doi.org/10.1016/S0040-6090(00)01053-1</a>
</li>
<li> K.K. Chin. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells. Sol. Energy Mat. Sol. Cells 94, 1627 (2010).
<a href="https://doi.org/10.1016/j.solmat.2010.05.006">https://doi.org/10.1016/j.solmat.2010.05.006</a>
</li>
<li> S.B. Zhang, S.-H. Wei, Y. Yan. The thermodynamics of codoping: How does it work? Physica B 302–303, 135 (2001).
<a href="https://doi.org/10.1016/S0921-4526(01)00418-5">https://doi.org/10.1016/S0921-4526(01)00418-5</a>
</li>
<li> N. Romeo, A. Bosio, A. Romeo. An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Sol. Energy Mat. Sol. Cells 94, 2 (2010).
<a href="https://doi.org/10.1016/j.solmat.2009.06.001">https://doi.org/10.1016/j.solmat.2009.06.001</a>
</li>
<li> M. Ramaya, S. Ganesan. Study of thickness dependent characterictics of Cu2S thin film for various applications. Iranian J. Mater. Sci. Eng. 8, No. 2, 34 (2011).
</li>
<li> Yu.N. Bobrenko, S.Yu. Pavelets, T.V. Semikina, O.A. Stadnyk, G.I. Sheremetova, M.V. Yaroshenko. Thin-film solar converters based on the p-Cu1.8S/n-CdTe surface-barrier structure. Semicond. Phys. Quant. Electr. Optoelectr. 18, 101 (2015).
<a href="https://doi.org/10.15407/spqeo18.01.101">https://doi.org/10.15407/spqeo18.01.101</a>
</li>
<li> G.S. Khrypunov, G.I. Kopach, R.V. Zaitsev, A.P. Dobrozhan, M.M. Kharchenko. Flexible solar cells based on underlying CdTe layers obtained by magnetron sputtering. J. Nano Electr. Phys. 9, 02008 (2017) (in Russian).
<a href="https://doi.org/10.21272/jnep.9(2).02008">https://doi.org/10.21272/jnep.9(2).02008</a>
</li>
<li> S.S. Babkair. Charge transport mechanisms and device parameters of CdS/CdTe solar cells fabricated by thermal evaporation. JKAU: Sci. 22, 21 (2010).
<a href="https://doi.org/10.4197/Sci.22-1.2">https://doi.org/10.4197/Sci.22-1.2</a>
</li>
<li> A. Wojcik, M. Godlewski, E. Guzievicz, R. Minikaev, W. Paszkovicz. Controlling of preferential growth mode of ZnO thin films by atomic layer deposition. J. Cryst. Growth 310, 284 (2008).
<a href="https://doi.org/10.1016/j.jcrysgro.2007.10.010">https://doi.org/10.1016/j.jcrysgro.2007.10.010</a>
</li>
<li> E. Prze’zdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz, M. Godlewski. Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semicond. Sci. Technol. 24, 105014 (2009).
<a href="https://doi.org/10.1088/0268-1242/24/10/105014">https://doi.org/10.1088/0268-1242/24/10/105014</a>
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.