Fabrication of CdS/CdTe Solar Cells by Quasiclosed Space Technology and Research of Their Properties

  • T. V. Semikina V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

Abstract

A quasiclosed space technology has been developed for the deposition of CdS and CdTe layers, while fabricating solar cells (SCs). Technological factors affecting the crystal lattice structure, the optical band gap width, and the conductivity in the CdS and CdTe layers are studied and analyzed. A technology to produce an ohmic contact with p-CdTe, by using the degenerate CuxS semiconductor, is proposed. The characteristics of SCs fabricated on substrates covered with various conducting films (Mo, ZnO, ZnO:Al) are analyzed. The measurement results of light and dark voltage-current characteristics testify to the better characteristics of ZnO and ZnO:Al films obtained by the atomic layer deposition from the viewpoint of their application in SCs. The optimum thicknesses of the CdS (67 nm), CdTe (about 1 /um), and CuxS (30 nm) layers, at which the best SC efficiency (n = 1.75÷1.89%) is obtained, are determined. The application of thin films in SC structures is shown to improve the characteristics of the latter.

Keywords vacuum quasiclosed space technology, CdS/CdTe solar cell, CuxS ohmic contact, Mo, ZnO, ZnO:Al conducting films

References


  1. T.V. Semikina, S.V. Mamykin, G.I. Sheremet, L.N. Shmyreva. ZnO thin films obtained by atomic layer deposition as a material for photovoltaics. Ukr. J. Phys. 61, 732 (2016).
    https://doi.org/10.15407/ujpe61.08.0732

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3 (2017).
    https://doi.org/10.1002/pip.2855

  3. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari. Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Ch. 52, 247 (2006).
    https://doi.org/10.1016/j.pcrysgrow.2006.09.001

  4. L.L. Kazmerski. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. J. Elect. Spectrosc. Rel. Phenom. 150, 105 (2006).
    https://doi.org/10.1016/j.elspec.2005.09.004

  5. A.G. Aberle. Thin-film solar cells. Thin Solid Films 517, 4706 (2009).
    https://doi.org/10.1016/j.tsf.2009.03.056

  6. R.W. Miles, K.M. Hynes, I. Forbes. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Ch. 51, 1 (2005).
    https://doi.org/10.1016/j.pcrysgrow.2005.10.002

  7. A. Jager-Waldau. Status of thin film solar cells in research, production and the market. Sol. Energy 77, 667 (2004).
    https://doi.org/10.1016/j.solener.2004.08.020

  8. T.L. Chu, S.S. Chu. Thin film II–VI photovoltaics. Sol. St. Electron. 38, 533 (1995).
    https://doi.org/10.1016/0038-1101(94)00203-R

  9. A.D. Compaan. Photovoltaics: Clean power for the 21st century. Sol. Energy Mat. Sol. Cells 90, 2170 (2006).
    https://doi.org/10.1016/j.solmat.2006.02.017

  10. A. Morales-Acevedo. Can we improve the record efficiency of CdS/CdTe solar cells? Sol. Energy Mat. Sol. Cells 90, 2213 (2006).
    https://doi.org/10.1016/j.solmat.2006.02.019

  11. T.V. Semikina, S.V. Mamykin, M. Godlewski, G. Luka, R. Pietruszka, K. Kopalko, T.A. Krajewski, S.S. Gieraltowska, J. Wachnicki, L.N. Shmyryeva. ZnO as a conductive layer prepared by ALD for solar cells based on n-CdS/n-CdTe/p-Cu1.8S heterostructure. J. Semicond. Phys. Quant. Electron. Optoelectron. 16, 111 (2013).
    https://doi.org/10.15407/spqeo16.02.111

  12. T.V. Semikina. Atomic layer deposition as a nanotechnological method for producing functional materials: A review. Uch. Zapis. Tavrich. Nat. Univ. Ser. Fiz. 22, No. 1, 116 (2009) (in Russian).

  13. C.G. Granqvist. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mat. Sol. Cells 91, 1529 (2007).
    https://doi.org/10.1016/j.solmat.2007.04.031

  14. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875 (2003).
    https://doi.org/10.1063/1.1605805

  15. M. Godlewski, E. Guziewicz, K. Kopalko, G. Luka, M.I. Lukasiewicz, T. Krajewski, B.S. Witkowski, S. Gieraltowska. Zinc oxide for electronic, photovoltaic and optoelectronic applications. Low Temp. Phys. 37, 235 (2011).
    https://doi.org/10.1063/1.3570930

  16. N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, V. Osinniy. Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition. Appl. Phys. Lett. 92, 023502 (2008).
    https://doi.org/10.1063/1.2830940

  17. S. Gieraltowska, L. Wachnicki, B.S. Witkowski, M. Godlewski, E. Guziewicz. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520, 4694 (2012).
    https://doi.org/10.1016/j.tsf.2011.10.151

  18. T.A. Krajewski, G. Luka, L. Wachnicki, A.J. Zakrewski, B.S. Witkowski, M.I. Lukasiewicz, P. Kruszewski, E. Lusakowska, R. Jakiela, M. Godlewski, E. Guziewicz. Electrical parameters of ZnO films and ZnO-based junctions obtained by atomic layer deposition. Semicond. Sci. Technol. 26, 085013 (2011).
    https://doi.org/10.1088/0268-1242/26/8/085013

  19. T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I.A. Kowalik, A.Wojcik-Glodowska, M. Lukasiewicz, K. Koplako, V. Osinniy, M. Guziewicz. The influence of growth temperature and precursors' doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectr. J. 40, 293 (2009).
    https://doi.org/10.1016/j.mejo.2008.07.053

  20. G. Luka, M. Godlewski, E. Guziewicz, P. Stahira, V. Cherpak, D. Volonyuk. ZnO films grown by atomic layer deposition for organic electronics. Semicond. Sci. Technol. 27, 074006 (2012).
    https://doi.org/10.1088/0268-1242/27/7/074006

  21. N.V. Yaroshenko, T.V. Semikina, Yu.N. Bobrenko, W. Pashkovich, R. Minikaev, L.N. Shmyreva, V.N. Komashchenko. Preparation of thin-film heterostructures by the hot-wall method and the study of current transfer mechanisms. Elektron. Svyaz 2, 28 (2011) (in Russian).

  22. L.A. Kosyachenko, E.V. Grushko. Prospects for the use of thin-film cadmium telluride in solar energetics. Ukr. Fiz. Zh. Ogl. 7, 3 (2012) (in Ukrainian).

  23. A.Y. Jaber, S.N. Alamri, M.S. Aida, M. Benghanem, A.A. Abdelaziz. Influence of substrate temperature on thermally evaporated CdS thin films properties. J. Alloy. Compd. 529, 63 (2012).
    https://doi.org/10.1016/j.jallcom.2012.03.093

  24. H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007) [ISBN: 9780470016084].
    https://doi.org/10.1002/9780470060193

  25. N. Dmitruk, L. D’ozsa, S. Mamykin, O. Kondratenko, G. Moln’ar. Effect of annealing on optical properties of thin films with B-FeSi 2 quantum dots. Vacuum 84, 238 (2009).
    https://doi.org/10.1016/j.vacuum.2009.05.008

  26. S.Yu. Pavelets, Yu.M. Bobrenko, A.M. Pavelets, M.M. Kretulis. High effective surface-barrier sensors with low resistive surface layers. Optoelektron. Poluprovodn. Tekhn. 37, 112 (2002) (in Russian).

  27. Yu.N.Bobrenko, A.M.Pavelets, S.Yu.Pavelets, V.M.Tkachenko. Short-wave photosensitivity of surface-barrier structures based on degenerate semiconductor-semiconductor junctions. Pis'ma Zh. Tekhn. Fiz. 20, No. 12, 9 (1994) (in Russian).

  28. S.A. Mahmoud, A.A. Ibrahim, A.S. Riad. Physical properties of thermal coating CdS thin films using a modified evaporation source. Thin Solid Films 372, 144 (2000).
    https://doi.org/10.1016/S0040-6090(00)01053-1

  29. K.K. Chin. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells. Sol. Energy Mat. Sol. Cells 94, 1627 (2010).
    https://doi.org/10.1016/j.solmat.2010.05.006

  30. S.B. Zhang, S.-H. Wei, Y. Yan. The thermodynamics of codoping: How does it work? Physica B 302–303, 135 (2001).
    https://doi.org/10.1016/S0921-4526(01)00418-5

  31. N. Romeo, A. Bosio, A. Romeo. An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Sol. Energy Mat. Sol. Cells 94, 2 (2010).
    https://doi.org/10.1016/j.solmat.2009.06.001

  32. M. Ramaya, S. Ganesan. Study of thickness dependent characterictics of Cu2S thin film for various applications. Iranian J. Mater. Sci. Eng. 8, No. 2, 34 (2011).

  33. Yu.N. Bobrenko, S.Yu. Pavelets, T.V. Semikina, O.A. Stadnyk, G.I. Sheremetova, M.V. Yaroshenko. Thin-film solar converters based on the p-Cu1.8S/n-CdTe surface-barrier structure. Semicond. Phys. Quant. Electr. Optoelectr. 18, 101 (2015).
    https://doi.org/10.15407/spqeo18.01.101

  34. G.S. Khrypunov, G.I. Kopach, R.V. Zaitsev, A.P. Dobrozhan, M.M. Kharchenko. Flexible solar cells based on underlying CdTe layers obtained by magnetron sputtering. J. Nano Electr. Phys. 9, 02008 (2017) (in Russian).
    https://doi.org/10.21272/jnep.9(2).02008

  35. S.S. Babkair. Charge transport mechanisms and device parameters of CdS/CdTe solar cells fabricated by thermal evaporation. JKAU: Sci. 22, 21 (2010).
    https://doi.org/10.4197/Sci.22-1.2

  36. A. Wojcik, M. Godlewski, E. Guzievicz, R. Minikaev, W. Paszkovicz. Controlling of preferential growth mode of ZnO thin films by atomic layer deposition. J. Cryst. Growth 310, 284 (2008).
    https://doi.org/10.1016/j.jcrysgro.2007.10.010

  37. E. Prze’zdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz, M. Godlewski. Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semicond. Sci. Technol. 24, 105014 (2009).
    https://doi.org/10.1088/0268-1242/24/10/105014
Published
2018-03-10
How to Cite
Semikina, T. (2018). Fabrication of CdS/CdTe Solar Cells by Quasiclosed Space Technology and Research of Their Properties. Ukrainian Journal Of Physics, 63(2), 156. doi:10.15407/ujpe63.2.156
Section
Semiconductors and dielectrics