Features of Radiation-Defect Annealing in n-Ge Single Crystals Irradiated with High-Energy Electrons


  • S. V. Luniov Luts’k National Technical University
  • A. I. Zimych Luts’k National Technical University
  • M. V. Khvyshchun Luts’k National Technical University
  • V. T. Maslyuk Institute of Electron Physics, National Academy of Sciences of Ukraine
  • I. G. Megela Institute of Electron Physics, National Academy of Sciences of Ukraine




isothermal annealing, radiation-induced defects, disordered regions, np conversion, germanium single crystals


The isothermal annealing of n-Ge single crystals irradiated with 10-MeV electrons to the fluence Φ = 5 × 1015 cm−2 has been studied. On the basis of the measured temperature dependences of the Hall constant and by solving the electroneutrality equations, the concentrations of radiation-induced defects (A-centers) in irradiated n-Ge single crystals are calculated both before and after the annealing. An anomalous increase of the Hall constant is found, when the irradiated n-Ge single crystals were annealed at Tan = 403 K for up to 3 h. The annealing at the temperature Tan = 393 K for 1 h gave rise to the np conversion in the researched crystals. The revealed effects can be explained by the concentration growth of A-centers owing to the generation of vacancies at the annealing of disordered crystal regions.


V.V. Uglov. Radiation-Induced Effects in Solids (Belarusian State Univ., 2007) (in Russian).

V.N. Voevodin, I.M. Neklyudov. Structural-Phase State Evolution and Radiation Resistance of Structural Materials (Naukova Dumka, 2006) (in Russian).

A.G. Chmielewski, M. Haji-Saeid. Radiation technologies: Past, present and future. Radiat. Phys. Chem. 71, 17 (2004). https://doi.org/10.1016/j.radphyschem.2004.05.040

C. Claes, E. Simoen. Germanium-Based Technologies: From Materials to Devices (Elsevier, 2007).

F. Murphy-Armando, S. Fahy. Giant enhancement of n-type carrier mobility in highly strained germanium nanostructures. J. Appl. Phys. 109, 113703 (2011). https://doi.org/10.1063/1.3590334

B. Lemke, R. Baskaran, O. Paul. Piezoresistive CMOS sensor for out-of-plane normal stress. Sensor. Actuat. A 176, 10 (2012). https://doi.org/10.1016/j.sna.2011.12.038

D.N. Lobanov, A.V. Novikov, K.E. Kudryavtsev, D.V. Shengurov, Yu.N. Drozdov, A.N. Yablonskiy, V.B. Shmagin, Z.F. Krasilnik, N.D. Zakharov, P. Werner. Effect of Ge(Si)/Si(001) self-assembled islands parameters on their electroluminescence at room temperature. Semiconductors 43, 332 (2009). https://doi.org/10.1134/S1063782609030105

S. Tong, J. Liu, L.J. Wan, Kang L. Wang. Normal-incidence Ge quantum-dot photodetectors at 1.5 мm based on Si substrate. Appl. Phys. Lett. 80, 1189 (2002). https://doi.org/10.1063/1.1449525

K. Brunner. Si/Ge nanostructures. Rep. Prog. Phys. 65, 27 (2002). https://doi.org/10.1088/0034-4885/65/1/202

K.I. Tapero, V.N. Ulimov, A.M. Chlenov. Radiation Effects in Silicon Integrated Circuits for Space Applications (BINOM, 2014) (in Russian).

A.P. Dolgolenko. Modification of radiation defects in Si and Ge by background impurity. Nucl. Phys. At. Ener. 14, 377 (2013).

P.G. Baranov, A.N. Ionov, I.V. Ilyin, P.S. Kopyev, E.N. Mokhov, V.A. Khramtsov. Electron-paramagnetic resonance in neutron-doped semiconductors with a modified isotopic composition. Fiz. Tverd. Tela 45, 988 (2003) (in Russian).

V.V. Litvinov, L.I. Murin, J.L. Lindstrom, V.P. Markevich, A.N. Petukh. Local vibrational modes of oxygen-vacancy complex in germanium. Fiz. Tekh. Poluprovodn. 36, 658 (2002) (in Russian). https://doi.org/10.1134/1.1485658

J.A. Baldvin. Electron paramagnetic resonance in irradiated oxygen-doped germanium. J. Appl. Phys. 36, 793 (1965). https://doi.org/10.1063/1.1714220

R.E. Whan. Oxygen-defect complexes in neutron-irradiated germanium. J. Appl. Phys. 37, 2435 (1966). https://doi.org/10.1063/1.1708832

G.P. Gaidar. Annealing of radiation defects in silicon. Elektron. Obrab. Mater. 48, 93 (2012) (in Russian).

S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela. Radiation defects parameters determinationin n-Ge single crystals irradiated by high-energy electrons. Nucl. Phys. At. Ener. 17, 47 (2016). https://doi.org/10.15407/jnpae2016.01.047

J. Fage-Pedersen, A.N. Larsen, A. Mesli. Irradiation-induced defects in Ge studied by transient spectroscopies. Phys. Rev. B 62, 10116 (2000). https://doi.org/10.1103/PhysRevB.62.10116

S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela. The impact of radiation defects on the mechanisms of electron scattering in single crystals n-Ge. J. Phys. Stud. 19, 4704 (2015).

E.N. Vologdin, A.P. Lysenko. Integral Radiation-Induced Changes of the Parameters of Semiconductor Materials (Moscow State Institute of Electronics and Mathematics, 1998) (in Russian).

Ya.M. Olikh, I.A. Lysyuk, N.D. Timochko. Acousto-stimulated reduction of radiation-defect annealing temperature in Ge crystals. Tekhnol. Konstr. Elektron. Apparat. 3, 10 (2004) (in Russian).

P.S. Kireev. Semiconductor Physics (Mir Publishers, 1978).



How to Cite

Luniov, S. V., Zimych, A. I., Khvyshchun, M. V., Maslyuk, V. T., & Megela, I. G. (2019). Features of Radiation-Defect Annealing in n-Ge Single Crystals Irradiated with High-Energy Electrons. Ukrainian Journal of Physics, 64(2), 151. https://doi.org/10.15407/ujpe64.2.151



Semiconductors and dielectrics