Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications

  • I. V. Blonskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Kadan Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • S. V. Pavlova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. A. Pavlov Institute of Physics, Nat. Acad. of Sci. of Ukraine, Bilkent University, Department of Physics
  • O. I. Shpotyuk Vlokh Institute of Physical Optics, Institute of Physics of Jan Dlugosz University
  • O. K. Khasanov Scientific-Practical Material Research Centre, NAS of Belarus
Keywords: femtosecond laser pulses, Kerr effect, femtosecond filaments, crystal silicon, self-focusing, self-phase modulation


The peculiarities of the femtosecond filamentation in Kerr media has been studied using a set of time-resoling experimental techniques. These include the temporal self-compression of a laser pulse in the filamentation mode, repulsive and attractive interactions of filaments, and influence of the birefringence on the filamentation. The propagation of femtosecond laser pulses at the 1550-nm wavelength in c-Si is studied for the first time using methods of time-resolved transmission microscopy. The nonlinear widening of the pulse spectrum due to the Kerr- and plasma-caused self-phase modulation is recorded.


C. Rulli'ere. Femtosecond Laser Pulses. Principles and Experiments (Springer, 1998). https://doi.org/10.1007/978-3-662-03682-2

I.V. Blonskyi, V.M. Kadan. Ultrafast and Superpowerful Light Pulses in Condensed Media (Naukova Dumka, 2017) (in Ukrainian).

I.V. Blonskyi, V.M. Kadan, V.M. Puzikov, L.A. Grin'. Temporal autolocalization of femtosecond light pulses in the filaments observed in fused silica. Ukr. J. Phys. Opt. 14, 85 (2013). https://doi.org/10.3116/16091833/14/2/85/2013

A.A. Dergachev, V.N. Kadan, S.A. Shlenov. Interaction of noncollinear femtosecond laser filaments in sapphire. Quantum Electron. 42, 125 (2012). https://doi.org/10.1070/QE2012v042n02ABEH014751

I. Blonskyi, V. Kadan, O. Shpotyuk et al. Filamentation in the intersection region of two femtosecond laser beams in sapphire. Ukr. J. Phys. 59, 344 (2014). https://doi.org/10.15407/ujpe59.03.0344

I. Blonskyi, V. Kadan, O. Shpotyuk et al. Interaction of femtosecond filaments in sapphire. Proc. of SPIE 7993, 79931C-1 (2011). https://doi.org/10.1117/12.881013

I. Blonskyi, V. Kadan, Y. Shynkarenko et al. Periodic femtosecond filamentation in birefringent media. Applied Phys. B 120, 905 (2015). https://doi.org/10.1007/s00340-015-6186-x

A.C. Bernstein, M. McCormic, G.M. Dyer et al. Two-beam coupling between filament-forming beams in air. Phys. Rev. Lett. 102, 123902 (2009). https://doi.org/10.1103/PhysRevLett.102.123902

S. Tzortzakis, L. Berge, A. Couairon et al. Breakup and fusion of self-guided femtosecond light pulses in air. Phys. Rev. Lett. 86, 5470 (2001). https://doi.org/10.1103/PhysRevLett.86.5470

T. Xi, X. Lu, J. Zhang. Interaction of light filaments generated by femtosecond laser pulses in air. Phys. Rev. Lett. 96, 025003 (2006). https://doi.org/10.1103/PhysRevLett.96.025003

I. Blonskyi, V. Kadan, O. Shpotyuk et al. Filament-induced self-written waveguides in glassy As4Ge30S66. Appl. Phys. B 104, 951 (2011). https://doi.org/10.1007/s00340-011-4390-x

V. Kadan, I. Blonskyi, Y. Shynkarenko et al. Single-pulse femtosecond laser fabrication of concave microlens and micromirror arrays in chalcohalide glass. Optics and Laser Technology 96 , 283 (2017). https://doi.org/10.1016/j.optlastec.2017.05.025

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan et al. Femtosecond laser written waveguides deep inside silicon. Opics Letters 42, 3028 (2017). https://doi.org/10.1364/OL.42.003028

Y.R. Shen. The Principles of Nonlinear Optics (Wiley, 1984).

D. Faccio, M. Clerici, A. Averchi et al. Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption. Opt. Express 16, 8213 (2008). https://doi.org/10.1364/OE.16.008213

B.M. Penetrante, J.N. Bardsley, W.M. Wood et al. Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B 9, (2032) 1992. https://doi.org/10.1364/JOSAB.9.002032

Q. Lin, O.J. Painter, G.P. Agrawal. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 15, 16604 (2007). https://doi.org/10.1364/OE.15.016604

J.F. Reintjes, J.C. McGroddy. Indirect two-photon transitions in Si at 1.06 mkm. Phys. Rev. Lett. 30, 901 (1973). https://doi.org/10.1103/PhysRevLett.30.901

M. Combescot, J. Bok. Electron-hole plasma generation and evolution in semiconductors. J. Lumin. 30, 1 (1985). https://doi.org/10.1016/B978-0-444-86931-9.50006-7

J.R. Chelikowsky, M.R. Cohen. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B 14, 556 (1976). https://doi.org/10.1103/PhysRevB.14.556

V.V. Kononenko, E.V. Zavedeev, V.M. Gololobov. The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si. Appl. Phys. A 122, 293 (2016). https://doi.org/10.1007/s00339-016-9844-x

How to Cite
Blonskyi, I., Kadan, V., Pavlova, S., Pavlov, I., Shpotyuk, O., & Khasanov, O. (2019). Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications. Ukrainian Journal of Physics, 64(6), 457. https://doi.org/10.15407/ujpe64.6.457
Optics, atoms and molecules

Most read articles by the same author(s)