Unitarity Effects in High-Energy Elastic Scattering

Authors

  • M. Maneyro Instituto de F´ısica, Facultad de Ingenier´ıa, Universidad de la Rep´ublica, Department of Physics, University of Liverpool
  • E.G.S. Luna Instituto de F´isica, Universidade Federal do Rio Grande do Sul
  • M. Peláez Instituto de F´ısica, Facultad de Ingenier´ıa, Universidad de la Rep´ublica

DOI:

https://doi.org/10.15407/ujpe69.11.874

Keywords:

unitarity, Pomeron, Odderon, elastic scattering

Abstract

We investigate the high-energy behavior of the elastic scattering amplitude using the eikonal and U -matrix unitarization schemes. This work extends the analysis in [1] by exploring the sensitivity of the Pomeron and Odderon parameters to the inclusion of differential cross section data over an extended range of |t|.

References

M. Maneyro, E.G.S. Luna, M. Pel'aez. Unitarity effects in elastic scattering at the LHC. Phys. Rev. D 110, 074011 (2024).

https://doi.org/10.1103/PhysRevD.110.074011

A.A. Anselm, V.N. Gribov. Zero pion mass limit in interaction at very high energies. Phys. Lett. B 40, 487 (1972).

https://doi.org/10.1016/0370-2693(72)90559-X

V.A. Khoze, A.D. Martin, M.G. Ryskin. Soft diffraction and the elastic slope at Tevatron and LHC energies: A multi-Pomeron approach. Eur. Phys. J. C 18, 167 (2000).

https://doi.org/10.1007/s100520000494

E.G.S. Luna, V.A. Khoze, A.D. Martin, M.G. Ryskin. Diffractive dissociation re-visited for predictions at the LHC. Eur. Phys. J. C 59, 1 (2009).

https://doi.org/10.1140/epjc/s10052-008-0793-1

E.G.S. Luna, V.A. Khoze, A.D. Martin, M.G. Ryskin. The possibility that the triple-Pomeron coupling vanishes at qt = 0. Eur. Phys. J. C 69, 95 (2010).

https://doi.org/10.1140/epjc/s10052-010-1393-4

M. Broilo, D.A. Fagundes, E.G.S. Luna, M. Pel'aez. Soft Pomeron in light of the LHC correlated data. Phys. Rev. D 103, 014019 (2021).

https://doi.org/10.1103/PhysRevD.103.014019

E.G.S. Luna, M.G. Ryskin, V.A. Khoze. Open Access Odderon contribution in light of the LHC low-t data. Phys. Rev. D 110, 014002 (2024).

V. Petrov, N.P. Tkachenko. ATLAS vs. TOTEM: Disturbing Divergence. Phys. Part. Nucl. 54, 1152 (2023).

https://doi.org/10.1134/S106377962306028X

V. Petrov, N.P. Tkachenko. TOTEM-ATLAS ambiguity: Shouldn't one worry? Nucl. Phys. A 1042, 122807 (2024).

https://doi.org/10.1016/j.nuclphysa.2023.122807

G.B. Bopsin, E.G.S. Luna, A.A. Natale, M. Pel'aez. Nonperturbative gluon exchange in pp elastic scattering at TeV energies. Phys. Rev. D 107, 114011 (2023).

https://doi.org/10.1103/PhysRevD.107.114011

R.L. Workman et al. (Particle Data Group). Number of light neutrino types from collider experiments. The review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

G. Antchev et al. Measurement of proton-proton elastic scattering and total cross section at. Europhys. Lett. 101, 21002 (2013).

G. Antchev et al. Evidence for non-exponential elastic proton. Ѕproton differential cross section at low |t| and √s = 8 TeV by TOTEM. Nucl. Phys. B 899, 527 (2015).

G. Antchev et al. Proton-proton elastic scattering at the LHC energy of √s = 7 TeV. Europhys. Lett. 95, 41001 (2011).

G. Antchev et al. Measurement of elastic pp scattering at √s = 8 TeV in the CoulombпїЅnuclear interference region:

Determination of the p-parameter and the total cross section. Eur. Phys. J. C 76, 661 (2016).

G. Antchev et al. First determination of the ρ parameter at √s = 13 TeV: Probing the existence of a colourless Codd three-gluon compound state. Eur. Phys. J. C 79, 785 (2019).

G. Antchev et al. Elastic differential cross section measurement at √s = 13 TeV by TOTEM. Eur. Phys. J. C 79, 861 (2019).

G. Aad et al. Measurement of the total cross section from elastic scattering in pp collisions at √s = 7 TeV with the ATLAS detector. Nucl. Phys. B 889, 486 (2014).

M. Aaboud et al. Measurement of the total cross section from elastic scattering in pp collisions at √s = 8 TeV with the ATLAS detector. Phys. Lett. B 761, 158 (2016).

G. Aad et al. Measurement of the total cross section and ρ-parameter from elastic scattering in pp collisions at √s = 13 TeV with the ATLAS detector. Eur. Phys. J. C 83, 441 (2023).

E.G.S. Luna, M.J. Menon. On the total cross section extrapolations to cosmic-ray energies. arXiv:hep-ph/0105076.

E.G.S. Luna, M.J. Menon. Extrema bounds for the soft Pomeron intercept. Phys. Lett. B 565, 123 (2003).

https://doi.org/10.1016/S0370-2693(03)00755-X

E.G.S. Luna, M.J. Menon, J. Montanha. An analysis on extrema and constrained bounds for the soft pomeron intercept. Nucl. Phys. A 745, 104 (2004).

https://doi.org/10.1016/j.nuclphysa.2004.09.004

E.G.S. Luna, M.J. Menon, J. Montanha. Extensions of the extrema bounds for the pomeron intercept to meson-proton, gamma-proton and gamma-gamma scattering. Braz. J. Phys. 34, 268 (2004).

https://doi.org/10.1590/S0103-97332004000200026

R.J.M. Covolan, J. Montanha, K. Goulianos. A New determination of the soft pomeron intercept. Phys. Lett. B 389, 176 (1996).

https://doi.org/10.1016/S0370-2693(96)01362-7

P. Abreu et al. Measurement of the proton-air cross section at √s = 57 TeV with the Pierre Auger observatory. Phys. Rev. Lett. 109, 062002 (2012).

R.U. Abbasi et al. Measurement of the proton-air cross section with Telescope Array. Middle Drum detector and surface array in hybrid mode. Phys. Rev. D 92, 032007 (2015).

V.A. Khoze, A.D. Martin, M.G. Ryskin. Diffraction at the LHC. Eur. Phys. J. C 73, 2503 (2013).

https://doi.org/10.1140/epjc/s10052-013-2503-x

V.A. Khoze, A.D. Martin, M.G. Ryskin. Elastic and diffractive scattering at the LHC. Phys. Lett. B 784, 192 (2018).

https://doi.org/10.1016/j.physletb.2018.07.054

E. Gotsman, E. Levin, U. Maor. A comprehensive model of soft interactions in the LHC era. Int. J. Mod. Phys. A 30, 1542005 (2015).

https://doi.org/10.1142/S0217751X15420051

E. Gotsman, E. Levin, U. Maor. Diffraction production

V.N. Gribov. Analytic properties of the partial wave amplitudes and the asymptotic behavior of the scattering amplitude. Sov. Phys. JETP 15, 873 (1962).

V.N. Gribov. A reggeon diagram technique. Sov. Phys. JETP 26, 414 (1968).

V.N. Gribov. Inelastic processes at super high-energies and the problem of nuclear cross section. Sov. J. Nucl. Phys. 9, 369 (1969).

M. Baker, K.A. Ter-Martirosyan. Gribov's Reggeon calculus: Its physical basis and implications. Phys. Rep. 28, 1 (1976).

https://doi.org/10.1016/0370-1573(76)90002-8

Downloads

Published

2024-12-03

How to Cite

Maneyro, M., Luna, E., & Peláez, M. (2024). Unitarity Effects in High-Energy Elastic Scattering. Ukrainian Journal of Physics, 69(11), 874. https://doi.org/10.15407/ujpe69.11.874

Issue

Section

Theory