Lattices of Islands of Electron-Hole Liquid in Dichalcogenides under Optical Pumping

Authors

  • A.A. Chernyuk Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe70.2.118

Keywords:

dichalcogenides, exciton gas, electron-hole liquid, two-dimensional lattices

Abstract

The formation of islands of the electron-hole liquid in the case of uniform light irradiation of transition metal dichalcogenides such as MoS2 and MoTe2 has been simulated numerically. The kinetics of exciton capture by the islands has been considered, and the distribution of the exciton density around the islands has been calculated accounting for the correlation of islands’ positions in the exciton gas and the boundary conditions under various uniform pumping shapes. The size of the electron-hole liquid islands has been estimated. The optimal spatial arrangement of the electron-hole liquid islands and the dependence of the formed structure on the system’s parameters have been found.

References

1. T.M. Rice. The electron-hole liquid in semiconductors: Theoretical aspects. In: Solid State Physics. Edited by H. Ehrenreich, F. Seitz, D. Turnball (Academic Press, 1977), Vol. 32, p. l.

https://doi.org/10.1016/S0081-1947(08)60438-5

2. Electron-Hole Droplets in Semiconductors. Edited by C.D. Jeffries, L.V. Keldysh (North-Holland, 1983).

3. S.G. Tihodeev. The electron-hole liquid in a semiconductor. Sov. Phys. Usp. 28, 1 (1985).

https://doi.org/10.1070/PU1985v028n01ABEH003630

4. N.N. Sibeldin. Electron-hole liquid in semiconductors and low-dimensional structures. Phys.-Usp. 60, 1147 (2017).

https://doi.org/10.3367/UFNe.2017.08.038194

5. R.N. Silver. Lifetime, surface tension, and impurity effects in electron-hole condensation. Phys. Rev. B 11, 1569 (1975).

https://doi.org/10.1103/PhysRevB.11.1569

6. R.M. Westervelt. Nucleation phenomena in electron-hole drop formation in Ge and Si: I. Nucleation rates. Phys. Status Solidi B 74, 727 (1976).

https://doi.org/10.1002/pssb.2220740235

7. V.S. Bagaev, N.V. Zamkovets, L.V. Keldysh, N.N. Sibel'din, V.A. Tsvetkov. Kinetics of exciton condensation in germanium. Sov. Phys. JETP 43, 783 (1976).

8. T.M. Burbaev, D.S. Kozyrev, N.N. Sibeldin, M.L. Skorikov. Luminescence of a quasi-two-dimensional electronhole liquid and excitonic molecules in Si/SiGe/Si heterostructures upon two-electron transitions. JETP Letters 98, 823 (2014).

https://doi.org/10.1134/S0021364013250061

9. S.N. Nikolaev, V.S. Krivobok, V.S. Bagaev, E.E. Onishchenko, A.V. Novikov, M.V. Shaleev. Fine structure of the emission spectrum of a two-dimensional electron-hole liquid in SiGe/Si quantum wells. JETP Letters 104, 163 (2016).

https://doi.org/10.1134/S0021364016150121

10. N. Pauc, V. Calvo, J. Eymery, F. Fournel, N. Magnea. Electronic and optical properties of Si/SiO2 nanostructures. I. Electron-hole collective processes in single Si/SiO2 quantum wells. Phys. Rev. B 72, 205324 (2005).

https://doi.org/10.1103/PhysRevB.72.205324

11. M.A. Akmaev and T.M. Burbaev. Dipolar electron-hole liquid in a double-well SiGe/Si heterosystem. J. Phys.: Conf. Ser. 816, 012016 (2017).

https://doi.org/10.1088/1742-6596/816/1/012016

12. Y. Dankner, E. Finkman, A. Ron, E. Cohen, M.C. Tamargo, M.D. Sturge. Gain and strong-signal saturation of photoexcited quantum-well structures. Proc. SPIE 1283, 326 (1990).

https://doi.org/10.1117/12.20760

13. Y. Furukawa, M. Nakayama. Dynamical formation process of electron-hole droplets in a GaAs/AlAs type-II superlattice. J. Phys. Soc. Jpn. 85, 034701 (2016).

https://doi.org/10.7566/JPSJ.85.034701

14. M. Stern, V. Umansky I. Bar-Joseph. Exciton liquid in coupled quantum wells. Science 343, 55 (2014).

https://doi.org/10.1126/science.1243409

15. T.B. Arp, D. Pleskot, V. Aji, N.M. Gabor. Electron-hole liquid in a van der Waals heterostructure photocell at room temperature. Nature Photonic 13, 245 (2019).

https://doi.org/10.1038/s41566-019-0349-y

16. Y. Yu, A.W. Bataller, R. Younts, Y. Yu, G. Li, A.A. Puretzky, D.B. Geohegan, K. Gundogdu, L. Cao. Room-temperature electron-hole liquid in monolayer MoS2. ACS Nano 13, 10351 (2019).

https://doi.org/10.1021/acsnano.9b04124

17. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, Th. Amand, B. Urbaszek. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

https://doi.org/10.1103/RevModPhys.90.021001

18. S.A. Han, R. Bhatia, S.W. Kim. Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converge. 2, 17 (2015).

https://doi.org/10.1186/s40580-015-0048-4

19. Fan Yang, Jing Shang, Liangzhi Kou, Chun Li, Zichen Deng. Computational investigation of orderly doped transition metal dichalcogenides: Implications for nanoscale optoelectronic devices. ACS Appl. Nano Mater. 5, 3824 (2022).

https://doi.org/10.1021/acsanm.1c04456

20. D. Tedeschi, E. Blundo, M. Felici, G. Pettinari, B. Liu, T. Yildrim, E. Petroni, Ch. Zhang, Yi Zhu, S. Sennato, Yuerui Lu, A. Polimeni. Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 31, 1903795 (2019).

https://doi.org/10.1002/adma.201903795

21. R.G. Mendes, J. Pang, A. Bachmatiuk, Huy Quang Ta, Liang Zhao, Th. Gemming, Lei Fu, Zhongfan Liu, M.H. Rummeli. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13, 978 (2019).

https://doi.org/10.1021/acsnano.8b08079

22. Xiao Tang, Liangzhi Kou. 2D Janus transition metal dichalcogenides: properties and applications. Phys. Status Solidi B 259, 2100562 (2022).

https://doi.org/10.1002/pssb.202100562

23. V.I. Sugakov. Formation of inhomogeneous structures of condensed phases of excitons in quantum wells. Phys. Rev. B 76, 115303 (2007).

https://doi.org/10.1103/PhysRevB.76.115303

24. A.A. Chernyuk, V.I. Sugakov. Spatial structures of islands of electron-hole liquid in semiconductor quantum wells. Phys. Lett. A 384, 126185 (2020).

https://doi.org/10.1016/j.physleta.2019.126185

25. A. Korm'anyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi, N.D. Drummond, V. Fal'ko. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials 2, 022001 (2015).

https://doi.org/10.1088/2053-1583/2/2/022001

26. Hao Luo, Bolun Wang, Enze Wang, Xuewen Wang, Yufei Sun, Kai Liu. High-responsivity photovoltaic photodetectors based on MoTe2/MoSe2 van der Waals heterojunctions. Crystals 9, 315 (2019).

https://doi.org/10.3390/cryst9060315

27. Yao-Wen Chang, Yia-Chung Chang. Quantum anomalous Hall effect and electric-field-induced topological phase transition in AB-stacked MoTe2/WSe2 moir'e heterobilayers. Phys. Rev. B 106, 245412 (2022).

28. Eilho Jung, Jin Cheol Park, Yu-Seong Seo, Ji-Hee Kim, Jungseek Hwang, Young Hee Lee. Unusually large exciton binding energy in multilayered 2H-MoTe2. Sci. Rep. 12, 4543 (2022).

https://doi.org/10.1038/s41598-022-08692-1

29. Qiuyang Li, L. Huber, C. Nuckolls, Xiaoyang Zhu. Spinpolarized charge separation in a photoexcited transition metal dichalcogenide heterobilayer at room temperature. J. Phys. Chem. C 126, 15795 (2022).

https://doi.org/10.1021/acs.jpcc.2c04332

30. B. Han, C. Robert, E. Courtade, M. Manca, S. Shree, T. Amand, P. Renucci, T. Taniguchi, K. Watanabe, X. Marie, L.E. Golub, M.M. Glazov, B. Urbaszek. Exciton states in monolayer and probed by upconversion spectroscopy. Phys. Rev. X 8, 031073 (2018).

31. D.F. Cordovilla Leon, Zidong Li, S.W. Jang, Che-Hsuan Cheng, P.B. Deotare. Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018).

https://doi.org/10.1063/1.5063263

Published

2025-02-22

How to Cite

Chernyuk, A. (2025). Lattices of Islands of Electron-Hole Liquid in Dichalcogenides under Optical Pumping. Ukrainian Journal of Physics, 70(2), 118. https://doi.org/10.15407/ujpe70.2.118

Issue

Section

Semiconductors and dielectrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 > >> 

You may also start an advanced similarity search for this article.