Signals from the Early Universe

Authors

  • G. Wolschin Institute for Theoretical Physics, Heidelberg University

DOI:

https://doi.org/10.15407/ujpe69.11.819

Keywords:

nonlinear diffusion equation, partial thermalization of Lyα photons, cosmic microwave background

Abstract

It is proposed to account for the time-dependent partial thermalization of the Ly α lines emitted during cosmic recombination of electrons and protons in the early Universe based on an analytically solvable nonlinear diffusion model. The amplitude of the partially thermalized and redshifted Lyα line is found to be too low to be visible in the cosmic microwave spectrum, in accordance with previous numerical models and Planck observations. New space missions with more sensitive spectrometers are required to detect Ly α-remnants from recombination as frequency fluctuations in the cosmic microwave background. (An extended version of this article has previously appeared in Scientific Reports).

References

A.A. Penzias, R.W. Wilson. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. Lett. 142, 419 (1964).

https://doi.org/10.1086/148307

K.L. Chan, B.J.T. Jones. Distortions of the 3 K background radiation spectrum: Observational constraints on the early thermal history of the universe. Astrophys. J. 195, 1 (1975).

https://doi.org/10.1086/153299

J.C. Mather, D.J. Fixsen, R.A. Shafer, C. Mosier, D.T. Wilkinson. Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512, 511 (1990).

https://doi.org/10.1086/306805

D.J. Fixsen, J.C. Mather. The spectral results of the farinfrared absolute spectrophotometer instrument on COBE. Astrophys. J. 581, 817 (2002).

https://doi.org/10.1086/344402

G.F. Smoot, C.L. Bennett, A. Kogut, E.L. Wright et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1 (1992).

https://doi.org/10.1086/186504

C.L. Bennett et al. Nine-year wilkinson microwave anisotropy probe WMAP observations: Final maps and results. Astrophys. J. Supp. 208, 20 (2013).

https://doi.org/10.1088/0067-0049/208/2/20

N. Aghanim et al. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

R. Weyman, The energy spectrum of radiation in the expanding universe. Astrophys. J. 145, 560 (1966).

https://doi.org/10.1086/148795

Y.B. Zeldovich, R.A. Sunyaev. The interaction of matter and radiation in a hot-model universe. Astrophys. J. Supp. 4, 301 (1969).

https://doi.org/10.1007/BF00661821

R.A. Sunjaev, J. Chluba. Signals from the epoch of cosmological recombination. Astron. Nachr. 330, 657 (2009).

https://doi.org/10.1002/asna.200911237

G. Wolschin. Partial Lyα thermalization in an analytic nonlinear diffusion model. Sci. Rep. 14, 4935 (2024).

https://doi.org/10.1038/s41598-024-54833-z

G. Wolschin. Equilibration in finite Bose systems. Physica A 499, 1 (2018).

https://doi.org/10.1016/j.physa.2018.01.035

G. Wolschin. Nonlinear diffusion of fermions and bosons. Europhys. Lett. 140, 40002 (2022).

https://doi.org/10.1209/0295-5075/aca17a

G. Wolschin. Nonlinear diffusion of gluons. Physica A 597, 12729 (2022).

https://doi.org/10.1016/j.physa.2022.127299

A. Kabelac, G. Wolschin. Time-dependent condensation of bosonic potassium. Eur. Phys. J. D 76, 178 (2022).

https://doi.org/10.1140/epjd/s10053-022-00504-5

M. Dijkstra. Lya emitting galaxies as a probe of reionisation. Pub. Astr. Soc. Austr. 31, e040 (2014).

https://doi.org/10.1017/pasa.2014.33

A.E. Kramida. A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. At. Data Nucl. Data Tabl. 96, 586 (2010).

https://doi.org/10.1016/j.adt.2010.05.001

C. Hirata, J. Forbes. Lyman-alpha transfer in primordial hydrogen recombination. Phys. Rev. D 80, 023001 (2009).

https://doi.org/10.1103/PhysRevD.80.023001

M. Kokubo. Rayleigh and Raman scattering cross-sections and phase matrices of the ground-state hydrogen atom, and their astrophysical implications. Monthly Notices of the Royal Astronomical Society 529, 2131 (2024).

https://doi.org/10.1093/mnras/stae515

J.L. Puget et al. Tentative detection of a cosmic farinfrared background with COBE. Astron. Astrophys. 308, L5 (1996).

E. Dwek et al. The COBE diffuse infrared background experiment search for the cosmic infrared background. IV. Cosmological implications. Astrophys. J. 508, 106 (1998).

https://doi.org/10.1086/306382

S.I. Grachev, V.K. Dubrovich, Primordial hydrogen recombination dynamics with recoil upon scattering in the Ly-α line. Astron. Lett. 34, 439 (2008).

https://doi.org/10.1134/S1063773708070013

J.A.P. Glidden, C. Eigen, L.H. Dogra, T.A. Hilker, R.P. Smith, Z. Hadzibabic. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nature Phys. 17, 457 (2021).

https://doi.org/10.1038/s41567-020-01114-x

N. Rasch, G. Wolschin. Solving a nonlinear analytical model for bosonic equilibration. Phys. Open 2, 100013 (2020).

https://doi.org/10.1016/j.physo.2019.100013

J. Chluba, R.A. Sunjaev. Cosmological hydrogen recombination: Influence of resonance and electron scattering. Astron. Astrophys. 503, 345 (2009).

https://doi.org/10.1051/0004-6361/200912335

G.B. Rybicki. Improved Fokker-Planck equation for resonance-line scattering. Astron. J. 647, 709 (2006).

https://doi.org/10.1086/505327

A.S. Kompaneets. The establishment of thermal equilibrium between quanta and electrons. Soviet Phys. JETP 4, 730 (1957).

Downloads

Published

2024-12-03

How to Cite

Wolschin, G. (2024). Signals from the Early Universe. Ukrainian Journal of Physics, 69(11), 819. https://doi.org/10.15407/ujpe69.11.819

Issue

Section

Theory