Electronic Structure and Possibility of Experimental Monitoring of the Phase Composition of Polyvinylidene Fluoride (PVDF) Crystals

Authors

  • Z. Baranchykov Kyiv National University named after Taras Shevchenko
  • Yu. Hizhnyi Kyiv National University named after Taras Shevchenko
  • O. Makarenko Kyiv National University named after Taras Shevchenko
  • S.G. Nedilko Kyiv National University named after Taras Shevchenko

DOI:

https://doi.org/10.15407/ujpe70.1.24

Keywords:

polyvinylidene fluoride, crystal, electronic structure, optical spectra, phase composition

Abstract

The organic polymer polyvinylidene fluoride (PVDF) is a promising and commercially attractive material for the modern needs of nanotechnology and microelectronics and biomedicine. Detecting the phase composition of PVDF blends is an important technological task. This paper presents the results of ab initio calculations of the electronic band structure of the three most common phases of polyvinylidene fluoride crystals α-, β- and γ-PVDF. The band dispersion curves, partial densities of electronic states, spatial distributions of electronic densities, spectra of dielectric constants, complex refractive index, absorption and reflection, infrared absorption spectra, Raman scattering and X-ray diffraction patterns of α-, β- and γ-phases of PVDF were obtained and analyzed. Analysis of the results of electronic structure calculations allowed to draw a number of conclusions regarding the peculiarities of formation of electronic and optical properties of the α-, β-, and γ-phases of PVDF crystal, as well as to make some predictions about the possibility of experimental monitoring of the phase composition of this compound. It has been established that detection of the simultaneous presence of β- and α- (or γ-) phases in PVDF crystal samples can be effectively performed by vacuum ultraviolet reflection spectroscopy, infrared absorption, Raman spectroscopy, and X-ray diffraction analysis. The presence of the α- phase on the background of the γ-phase of PVDF will be practically impossible to detect using these methods.

References

T. Furukawa. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143 (1989).

https://doi.org/10.1080/01411598908206863

M.M. Alam, X. Crispin. The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators. Nano Research Energy 2, 4 (2023).

https://doi.org/10.26599/NRE.2023.9120076

L. Lu, W. Ding, J. Liu, B. Yang. Flexible PVD F-based piezoelectric nanogenerators. Nano Energy 78, 105251 (2020).

https://doi.org/10.1016/j.nanoen.2020.105251

S.K. Karan, D. Mandal, B.B. Khatua. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale 7 (24), 10655 (2015).

https://doi.org/10.1039/C5NR02067K

F. Liu, N.A. Hashim, Y. Liu, M.R. Moghareh Abed, K. Li. Progress in the production and modification of PVDF membranes. J. Membrane Science 375, 1 (2011).

https://doi.org/10.1016/j.memsci.2011.03.014

S. Egusa, Z. Wang, N. Chocat, Z.M. Ruff, A.M. Stolyarov, D. Shemuly, Y. Fink. Multimaterial piezoelectric fibres. Nature Materials 9 (8), 643 (2010).

https://doi.org/10.1038/nmat2792

Z. Hu, M. Tian, B. Nysten, A.M. Jonas. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nature Materials 8 (1), 62 (2009).

https://doi.org/10.1038/nmat2339

S. Amer, W. Badawy. An integrated platform for bio-analysis and drug delivery. Current Pharmaceutical Biotechnology 6 (1), 57 (2005).

https://doi.org/10.2174/1389201053167220

A. Heredia, M. Machado, I.K. Bdikin, J. Gracio, S. Yudin, V.M. Fridkin, A.L. Kholkin. Preferred deposition of phospholipids onto ferroelectric P(VDF-TrFE) films via polarization patterning. J. Phys. D: Appl. Phys. 43 (33), 335301 (2010).

https://doi.org/10.1088/0022-3727/43/33/335301

S. Weinhold, M.H. Litt, J.B. Lando. Oriented phase III poly(vinylidene fluoride). J. Polymer Sci.: Polymer Lett. Edit. 17, 585 (1979).

https://doi.org/10.1002/pol.1979.130170907

M. Li, H.J. Wondergem, M-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, D.M. De Leeuw. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nature Materials 12, 433 (2013).

https://doi.org/10.1038/nmat3577

A.J. Lovinger. Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 15, 40 (1982).

https://doi.org/10.1021/ma00229a008

W.M. Jr. Prest, D.J. Luca. The morphology and thermal response of high-temperature-crystallized poly(vinylidene fluoride). J. Appl. Phys. 46, 4136 (1975).

https://doi.org/10.1063/1.321438

R. Hasegawa, M. Kobayashi, H. Tadokoro. Molecular conformation and packing of poly(vinylidene fluoride). Stability of three crystalline forms and the effect of high pressure. Polymer 3, 591 (1972).

https://doi.org/10.1295/polymj.3.591

V.V. Kochervinskii, B.V. Lokshin, S.P. Palto, G.N. Andreev, L.M. Blinov, N.N. Petukhova. Poly(vinylidene fluoride): Crystallization from solution and preparation of Langmuir films. Vysokomolekulyarnye Soedineniya. Seriya A, Seriya B 41, 1290 (1999).

R. Hasegawa, Y. Tanabe, M. Kobayashi, H. Tadokoro, A. Sawaoka, N. Kawai. Structural studies of pressurecrystallized polymers. I. Heat treatment of oriented polymers under high pressure. J. Polymer Sci. Part A-2: Polymer Phys. 8, 1073 (1970).

https://doi.org/10.1002/pol.1970.160080705

A.J. Lovinger. Crystallization and morphology of meltsolidified poly(vinylidene fluoride). J. Polymer Sci. Polymer Phys. Edit. 18, 793 (1980).

https://doi.org/10.1002/pol.1980.180180412

S. Osaki, Y. Ishida. Effects of annealing and isothermal crystallization upon crystalline forms of poly(vinylidene fluoride). J. Polymer Sci. Polymer Phys. Edit. 13, 1071 (1975).

https://doi.org/10.1002/pol.1975.180130602

G.T. Davis, J.E. McKinney, M.G. Broadhurst, S.C. Roth. Electric-field-induced phase changes in poly(vinylidene fluoride). J. Appl. phys. 49, 4998 (1978).

https://doi.org/10.1063/1.324446

R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polymer 3, 600 (1972).

https://doi.org/10.1295/polymj.3.600

W.W. Doll, J.B. Lando. Polymorphism of poly(vinylidene fluoride). III The crystal structure of phase II. J. Macromol. Sci. Part B: Physics 4, 309 (1970).

https://doi.org/10.1080/00222347008212505

S. Enomoto, Y. Kawai, M. Sugita. Infrared spectrum of poly(vinylidene fluoride). J. Polymer Scie. Part A-2: Polymer Phys. 6, 861 (1968).

https://doi.org/10.1002/pol.1968.160060506

A. Salimi, A.A. Yousefi. Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polymer Sci. PART B: Polymer Phys. 42, 3487 (2004).

https://doi.org/10.1002/polb.20223

F.J. Boerio, J.L. Koenig. Vibrational analysis of poly(vinylidene fluoride). J. Polymer Sci. Part A-2: Polymer Phys. 9, 1517 (1971).

https://doi.org/10.1002/pol.1971.160090811

A.M. Reyes, L. Sesenes, A. Mauricio. Effect of cationic substitution of metal species in poly(vinylidene difluoride) (C2H2F2) by ab initio calculations. Inorganic Chem. 59 (2), 15189 (2020).

https://doi.org/10.1021/acs.inorgchem.0c02160

A. Itoh, Yo. Takahashi, T. Furukawa et al. Solid-state calculations of poly(vinylidene fluoride) using the hybrid DFT method: spontaneous polarization of polymorphs. Polymer J. 46 (4), 207 (2014).

https://doi.org/10.1038/pj.2013.96

V.S. Bystrov et al. Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition. J. Appl. Phys. 111 (10), 104113 (2012).

https://doi.org/10.1063/1.4721373

T.D. Huan, R. Ramprasad. Polymer structure prediction from first principles. J. Phys. Chem. Lett. 11 (15), 5823 (2020).

https://doi.org/10.1021/acs.jpclett.0c01553

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne. First principles methods using CASTEP. Zeitschrift F¨ur kristallographie 220 (5-6), 567 (2005).

https://doi.org/10.1524/zkri.220.5.567.65075

K. Laasonen. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43 (8), 6796(R) (1991).

https://doi.org/10.1103/PhysRevB.43.6796

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18), 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

B.G. Pfrommer. Relaxation of crystals with the quasiNewton method. J. Computat. Phys. 131 (2), 233 (1997).

https://doi.org/10.1006/jcph.1996.5612

Y. Hizhnyi. Origin of luminescence in ZnMoO4 crystals: Insights from spectroscopic studies and electronic structure calculations. J. Luminescence 211, 127 (2019).

https://doi.org/10.1016/j.jlumin.2019.03.031

J.M. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, 1960).

M. Kobayashi, K. Tashiro, H. Tadokoro. Molecular vibrations of three crystal forms of poly (vinylidene fluoride). Macromolecules 8, 158 (1975).

https://doi.org/10.1021/ma60044a013

Published

2025-01-18

How to Cite

Baranchykov, Z., Hizhnyi, Y., Makarenko, O., & Nedilko, S. (2025). Electronic Structure and Possibility of Experimental Monitoring of the Phase Composition of Polyvinylidene Fluoride (PVDF) Crystals. Ukrainian Journal of Physics, 70(1), 24. https://doi.org/10.15407/ujpe70.1.24

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics