Thermodynamic Response Functions in a Cell Fluid Model

Authors

DOI:

https://doi.org/10.15407/ujpe69.12.919

Keywords:

cell model, Morse potential, thermodynamic response functions

Abstract

Thermodynamic response functions, namely, the isothermal compressibility, the thermal pressure coefficient, and the thermal expansion coefficient, are calculated for a many-particle system interacting through a modified Morse potential. These calculations are based on an equation of state previously derived for a cell fluid model in the grand canonical ensemble. The calculated quantities are presented graphically as functions of the density and the effective chemical potential.

References

D.C. Johnston. Advances in Thermodynamics of the van der Waals Fluid (Morgan & Claypool Publishers, 2014).

https://doi.org/10.1088/978-1-627-05532-1

T.M. Yigzawe, R.J. Sadus. Intermolecular interactions and the thermodynamic properties of supercritical fluids. J. Chem. Phys. 138, 194502 (2013).

https://doi.org/10.1063/1.4803855

I Velasco, C. Rivas, J.F. Martinez-Lopez, S.T. Blanco, S. Otin, M. Artal. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures. J. Phys. Chem. B 115, 8216 (2011).

https://doi.org/10.1021/jp202317n

L.A. Bulavin, Y.G. Rudnikov, A.V. Chalyi. Contributions to the isothermal compressibility coefficient of water near the temperature of 42 ∘C. AIP Advances 14, 085213 (2024).

https://doi.org/10.1063/5.0205612

Y. Kozitsky, M. Kozlovskii, O. Dobush. Phase Transitions in a Continuum Curie-Weiss System: A Quantitative Analysis. In: Modern Problems of Molecular Physics. Edited by L.A. Bulavin, A.V. Chalyi (Springer, 2018).

https://doi.org/10.1007/978-3-319-61109-9_11

Y. Kozitsky, M. Kozlovskii, O. Dobush. A phase transition in a Curie-Weiss system with binary interactions. Condens. Matter. Phys. 23, 23502 (2020).

https://doi.org/10.5488/CMP.23.23502

I. Pylyuk, M. Kozlovskii, O. Dobush, M. Dufanets. Morse fluids in the immediate vicinity of the critical point: Calculation of thermodynamic coefficients. J. Mol. Liq. 385, 122322 (2023).

https://doi.org/10.1016/j.molliq.2023.122322

I. Pylyuk, M. Kozlovskii, O. Dobush. Analytic calculation of the critical temperature and estimation of the critical region size for a fluid model. Ukr. J. Phys. 68, 601 (2023).

https://doi.org/10.15407/ujpe68.9.601

M. Kozlovskii, O. Dobush. Phase behavior of a cell fluid model with modified Morse potential. Ukr. J. Phys. 65, 428 (2020).

https://doi.org/10.15407/ujpe65.5.428

I. Pylyuk, O. Dobush. Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter. Ukr. J. Phys. 65, 1080 (2020).

https://doi.org/10.15407/ujpe65.12.1080

P. Str¨oker, K. Meier. Classical statistical mechanics in the grand canonical ensemble. Phys. Rev. E 104, 014117 (2021).

https://doi.org/10.1103/PhysRevE.104.014117

P. M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929).

https://doi.org/10.1103/PhysRev.34.57

A. Martinez-Valencia, M. Gonzalez-Melchor, P. Orea, J. Lopez-Lemus. LiquidпїЅvapour interface varying the softness and range of the interaction potential. Molecular Simulation 39, 64 (2013).

https://doi.org/10.1080/08927022.2012.702422

R. Biswas, D.R. Hamann. Interatomic potentials for silicon structural energies. Phys. Rev. Lett. 55, 2001 (1985).

https://doi.org/10.1103/PhysRevLett.55.2001

T.-C. Lim. Approximate relationships between the generalized Morse and the extended-Rydberg potential energy functions. Acta Chim. Slov. 52, 149 (2005).

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).

https://doi.org/10.1016/j.molliq.2015.12.018

J. Hansen, I. McDonald. Theory of Simple Liquids: with Applications to Soft Matter. 4th Edition (Academic Press, 2013) [ISBN: 9780123870339].

https://doi.org/10.1016/B978-0-12-387032-2.00012-X

Downloads

Published

2024-12-14

How to Cite

Dobush, O., Kozlovskii, M., Romanik, R., & Pylyuk, I. (2024). Thermodynamic Response Functions in a Cell Fluid Model. Ukrainian Journal of Physics, 69(12), 919. https://doi.org/10.15407/ujpe69.12.919

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics