Non-Thermal Effect of Millimeter-Wave Radiation on the Fluorescence of Rhodamine 6G Aqueous Solution

Authors

  • A.V. Yakunov Taras Shevchenko National University of Kyiv
  • D.T. Ilchuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.12.913

Keywords:

millimeter waves, non-thermal effect, fluorescence, rhodamine 6G

Abstract

With the help of fluorescence spectroscopy, the effect of millimeter-wave radiation on the aqueous solutions of the organic dye rhodamine 6G has been studied. By optimizing the dye concentration, the thermal effects are minimized, and the contribution of non-thermal mechanisms is identified. The results obtained indicate that millimeter-wave radiation induces structural changes in the aqueous medium, which, in turn, leads to changes in the fluorescent properties of the dye.

References

A. Yakunov, A. Nizhelska, L. Marinchenko, V. Marinchenko, V. Makara. Influence of processing of yeast Saccharomyces cerevisiae with millimeter waves on fermentation indices in technology of bioethanol production. Surf. Eng. Appl. Electrochem. 51, 156 (2015).

https://doi.org/10.3103/S1068375515020143

M.T. Kubo, E.S. Siguemoto, E.S. Funcia, P.E. Augusto, S. Curet, L. Boillereaux, S.K. Sastry, J.A. Gut. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Curr. Opin. Food Sci. 35, 36 (2020).

https://doi.org/10.1016/j.cofs.2020.01.004

A.G. Markelz, D.M. Mittleman. Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics 9, 1117 (2022).

https://doi.org/10.1021/acsphotonics.2c00228

R. Habash. BioElectroMagnetics: Human Safety and Biomedical Applications (CRC Press, 2020).

https://doi.org/10.1201/9780429184093

J.-C. Chiao, C. Li, J. Lin, R.H. Caverly, J.C. Hwang, H. Rosen, A. Rosen. Applications of microwaves in medicine. IEEE J. Microwav. 3, 134 (2022).

https://doi.org/10.1109/JMW.2022.3223301

H. Wang, L. Lu, P. Liu, J. Zhang, S. Liu, Y. Xie, T. Huo, H. Zhou, M. Xue, Y. Fang. Millimeter waves in medical applications: Status and prospects. Intell. Med. 4, 16 (2024).

https://doi.org/10.1016/j.imed.2023.07.002

O.P. Gandhi. Electromagnetic fields: Human safety issues. Annu. Rev. Biomed. Eng. 4, 211 (2002).

https://doi.org/10.1146/annurev.bioeng.4.020702.153447

M. Shbanah, T.A. Kovacs. The effects of electromagnetic waves on human health. In: Security-Related Advanced Technologies in Critical Infrastructure Protection (Springer, 2022), p. 161.

https://doi.org/10.1007/978-94-024-2174-3_14

J. Moskowitz. 5G wireless technology: millimeter wave health effects. Electromagn. Rad. Safety 3, 3 (2017).

A. Wood, R. Mate, K. Karipidis. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J. Expos. Sci. Env. Epidem. 31, 606 (2021).

https://doi.org/10.1038/s41370-021-00307-7

I. Calvente, M.I. Nunez. Is the sustainability of exposure to non-ionizing electromagnetic radiation possible? Med. Clinic. (English Edition). 162, 387 (2024).

https://doi.org/10.1016/j.medcle.2023.11.016

B. Yemets. On mechanism of influence of low intense millimeter waves on air content in water. Int. J. Infrared Millimeter Wav. 22, 639 (2001).

https://doi.org/10.1023/A:1010681306768

Y. Asakuma, T. Maeda, T. Takai, A. Hyde, C. Phan, S. Ito, S. Taue. Microwaves reduce water refractive index. Sci. Rep. 12, 11562 (2022).

https://doi.org/10.1038/s41598-022-15853-9

G. Han, F. Liu, T. Zhang, W. Xu, Y. Zhang, N. Wu, S. Ouyang. Study of microwave non-thermal effects on hydrogen bonding in water by Raman spectroscopy. Spectrochim. Acta A 285, 121877 (2023).

https://doi.org/10.1016/j.saa.2022.121877

N. Wang, W. Zou, X. Li, Y. Liang, P. Wang. Study and application status of the nonthermal effects of microwaves in chemistry and materials science-a brief review. RSC Adv. 12, 17158 (2022).

https://doi.org/10.1039/D2RA00381C

J. Liu, G. Jia. Non-thermal effects of microwave in sodium chloride aqueous solution: Insights from molecular dynamics simulations. J. Mol. Liq. 227, 31 (2017).

https://doi.org/10.1016/j.molliq.2016.11.126

D. Gou, K. Huang, Y. Liu, H. Shi. Influence of weak microwaves on spatial collision and energy distribution of water molecules. Chem. Phys. 540, 110977 (2021).

https://doi.org/10.1016/j.chemphys.2020.110977

Y. Tao, B. Yan, N. Zhang, M. Wang, J. Zhao, H. Zhang, D. Fan. Do non-thermal effects exist in microwave heating of glucose aqueous solutions? Evidence from molecular dynamics simulations. Food Chem. 375, 131677 (2022).

https://doi.org/10.1016/j.foodchem.2021.131677

Y. Tao, B. Yan, N. Zhang, J. Zhao, H. Zhang, W. Chen, D. Fan. Decoupling thermal effects and possible nonthermal effects of microwaves in vacuum evaporation of glucose solutions. J. Food Eng. 338, 11257 (2023).

https://doi.org/10.1016/j.jfoodeng.2022.111257

D. Babich, N. Kuzkova, O. Popenko, A. Yakunov. Temperature measurement in microwave-irradiated systems using a temperature dependent fluorescent dye. Visn. Kyiv. Nats. Univ. Radiofiz. Elektron. 2, 13 (2014).

N. Kuzkova, O. Popenko, A. Yakunov. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments. J. Biomed. Imag. 2014, 12 (2014).

https://doi.org/10.1155/2014/243564

D. Babich, A. Kylsky, V. Pobiedina, A. Yakunov. Application of fluorescent dyes for some problems of bioelectromagnetics. SPIE Proc. 9887, 988735(2016).

https://doi.org/10.1117/12.2227373

M. Redkin, N. Gaiduk, A. Yakunov. Fluorescence-based technique to study the specific effects of microwaves. In: Frontiers in Optics/Laser Science. Edited by B. Lee, C. Mazzali, K. Corwin, R. Jason Jones. OSA Technical Digest (Optica Publishing Group, 2020), paper FM5C.4.

https://doi.org/10.1364/FIO.2020.FM5C.4

L. Bulavin, N. Gaiduk, M. Redkin, A. Yakunov. Specific effect of microwaves on the aqueous solution of rhodamine 6g according to fluorescence analysis. Ukr. J. Phys. 66, 256 (2021).

https://doi.org/10.15407/ujpe66.3.265

S. Viznyuk, P. Pashinin, A. Prokhorov, S. Rastopov, A. Sukhodolskii. Temperature-induced luminescence rise in aqueous solutions of rhodamine 6G. JETP Lett. 47, 230 (1988).

A. Geiger, F. Stillinger, A. Rahman. Aspects of the percolation process for hydrogen-bond networks in water. J. Chem. Phys. 70, 4185 (1979).

https://doi.org/10.1063/1.438042

A.V. Yakunov, M.M. Biliy, A.P. Naumenko. Long-term structural modification of water under microwave irradiation: low-frequency raman spectroscopic measurements. Adv. Opt. Technol. 2017, 1 (2017).

https://doi.org/10.1155/2017/5260912

Published

2024-12-14

How to Cite

Yakunov, A., & Ilchuk, D. (2024). Non-Thermal Effect of Millimeter-Wave Radiation on the Fluorescence of Rhodamine 6G Aqueous Solution. Ukrainian Journal of Physics, 69(12), 913. https://doi.org/10.15407/ujpe69.12.913

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics