Kinetics in the Two-Level System with Strong Time-De-pendent Coupling of Its States to the Phonon Bath: Spin-Boson Description

Authors

  • E.G. Petrov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • Ye.V. Shevchenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V.O. Leonov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V.I. Teslenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.8.552

Keywords:

quantum kinetics, two-level system, spin-boson model

Abstract

Using the methods of nonequilibrium statistical mechanics, the master equation for the density matrix of an open dissipative quantum system is obtained under conditions, when the coupling between the electronic states of the system and the nuclear displacements in it is controlled by the alternating field. A time-dependent polaron transformation is proposed, which made it possible to solve kinetic equations using an expansion in a parameter characterizing transitions between “phonon-dressed” electronic states of the system. As an example, a mechanism is shown that can control the kinetics in a two-level system by applying a periodic force field to electron-phonon coupling.

References

N.N. Bogoliubov. Lectures on Quantum Statistics, Vol. 2 (Gordon and Breach, 1970).

A.I. Akhiezer, S.V. Peletminsky. Methods of Statistical Physics (Pergamon Press, 1981).

K. Linderberg, B.J. West. The Non-equilibrium Statistical Mechanics of Open and Closed Systems (VCH Publisher, 1990).

E.G. Petrov, V.I. Teslenko. Kinetic equations for quantum dynamic system interacting with thermal bath and stochastic field. Theor. Math. Phys. 84, 986 (1991).

https://doi.org/10.1007/BF01017358

E.G. Petrov. Averaged master equation for a quantum system coupled to a heat bath with fluctuated energy levels. Phys. Rev. E 57, 94 (1998).

https://doi.org/10.1103/PhysRevE.57.94

H.P. Breuer, F. Petruccioni. The Theory of Open Quantum Systems (Oxford University Press, 2002).

A. Rivas, S. Huelga. Open Quantum Systems (Springer, 2012).

https://doi.org/10.1007/978-3-642-23354-8

R. Zwanzig. Nonequilibrium Quantum Mechanics (Oxford University Press, 2001).

https://doi.org/10.1093/oso/9780195140187.001.0001

K. Blum. Density Matrix Theory and Applications. 3rd ed. (Springer-Verlag, 2012).

https://doi.org/10.1007/978-3-642-20561-3

Y. Tanimura. Numerically "Exact" approach to open quantum dynamics: The hierarchical equations of motions (HEOM). J. Chem. Phys. 153, 020901 (2020).

https://doi.org/10.1063/5.0011599

D. Manzano. A short introduction to the Lindblad master equatin. AIP Advances 10, 025106 (2020).

https://doi.org/10.1063/1.5115323

A.J. Legget, S. Chakravarty, A. Dorsey, M.P.A. Fisher, A. Garg, W. Zweger. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987).

https://doi.org/10.1103/RevModPhys.59.1

U. Weiss. Quantum Dissipative Systems (World Scientific, 1999).

https://doi.org/10.1142/9789812817877

E.G. Petrov, I.A. Goychuk, V. May. Effective transfer rates for a dissipative two-level system driven by regular and stochastic fields. Phys. Rev. E 54, R4500 (1996).

https://doi.org/10.1103/PhysRevE.54.R4500

I.A. Goychuk, E.G. Petrov, V. May. Control of the dynamics of a dissipative two-level system by a strong periodic field. Chem. Phys. Lett. 253, 428 (1996).

https://doi.org/10.1016/0009-2614(96)00323-5

I. Goychuk, P. H¨anggi. Quantum dynamics in strong fluctuating fields. Adv. Phys. 54, 525 (2005).

https://doi.org/10.1080/00018730500429701

V.I. Teslenko, E.G. Petrov. Regularization of environmentinduced transitions in nanoscopic systems. Ukr. J. Phys. 61, 627 (2016).

https://doi.org/10.15407/ujpe61.07.0627

L.N. Christophorov, V.I. Teslenko, E.G. Petrov. Features of kinetic and regulatory processes in biosystems. Fiz. Nizk. Temp. 47, 273 (2021).

https://doi.org/10.1063/10.0003526

E.G. Petrov, V. May, P. H¨anggi. Spin-boson description of electron transmission through a molecular wire. Chem. Phys. 296, 251 (2004).

https://doi.org/10.1016/j.chemphys.2003.09.021

M. Grifoni, P. H¨anggi. Driven quantum tunneling. Phys. Rep. 304, 229 (1998).

https://doi.org/10.1016/S0370-1573(98)00022-2

E.G. Petrov, V.I. Teslenko. Relaxation in the system of vibrational levels of a harmonic oscillator. Theor. Math. Phys. 38, 87 (1979).

https://doi.org/10.1007/BF01030263

J. Casido-Pascual, M. Morillo, I, Goychuk, P. H¨anggi. The role of different reorganization energies within the zusman theory of electron transfer. J. Chem. Phys. 118, 291 (2003).

https://doi.org/10.1063/1.1525799

Published

2024-09-18

How to Cite

Petrov, E., Shevchenko, Y., Leonov, V., & Teslenko, V. (2024). Kinetics in the Two-Level System with Strong Time-De-pendent Coupling of Its States to the Phonon Bath: Spin-Boson Description. Ukrainian Journal of Physics, 69(8), 552. https://doi.org/10.15407/ujpe69.8.552

Issue

Section

General physics

Most read articles by the same author(s)