Structures Associated with the Borromean Rings’ Complement in the Poincaré Ball

Authors

  • Anton A. Nazarenko Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv
  • A.V. Nazarenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0002-6080-7426

DOI:

https://doi.org/10.15407/ujpe69.7.498

Keywords:

Borromean rings’ complement, fundamental group, Cayley tree, random walk, decorated Teichm¨uller space, sine-Gordon equation

Abstract

Guided by physical needs, we deal with the rotationally isotropic Poincar´e ball, when considering the complement of Borromean rings embedded in it. We consistently describe the geometry of the complement and realize the fundamental group as isometry subgroup in three dimensions. Applying this realization, we reveal normal stochastization and multifractal behavior within the examined model of directed random walks on the rooted Cayley tree, whose sixbranch graphs are associated with dendritic polymers. According to Penner, we construct the Teichm¨uller space of the decorated ideal octahedral surface related to the quotient space of the fundamental group action. Using the conformality of decoration, we define six moduli and the mapping class group generated by cyclic permutations of the ideal vertices. Intending to quantize the geometric area, we state the connection between the induced geometry and the sine-Gordon model. Due to such a correspondence we obtain the differential two-form in the cotangent bundle of the moduli space.

References

W.P. Thurston. The Geometry and Topology of 3-Manifolds (Princeton University Lecture Notes, 1978) [ISBN: 978-1-4704-7474-4].

N. Wielenberg. The structure of certain subgroups of the Picard group. Math. Proc. Camb. Phil. Soc. 84, 427 (1978).

https://doi.org/10.1017/S0305004100055250

K. Matsumoto. Automorphic functions with respect to the fundamental group of the complement of the Borromean rings. J. Math. Sci. Univ. Tokyo 13, 1 (2006).

R. Abe, I.R. Aitchison. Geometry and Markoff's spectrum for Q(i), I. Transact. AMS 365 (11), 6065 (2013).

https://doi.org/10.1090/S0002-9947-2013-05850-3

R.C. Penner. The decorated Teichm¨uller space of punctured surfaces. Comm. Math. Phys. 113, 299 (1987).

https://doi.org/10.1007/BF01223515

L.H. Kauffman, S.J. Lomonaco. Quantum entanglement and topological entanglement. New J. Phys. 4, 73 (2002).

https://doi.org/10.1088/1367-2630/4/1/373

M. Iqbal, N. Tantivasadakarn, R. Verresen et al. NonAbelian topological order and anyons on a trapped-ion processor. Nature 626, 505 (2024).

https://doi.org/10.1038/s41586-023-06934-4

T. Kraemer, M. Mark, P. Waldburger et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315 (2006).

https://doi.org/10.1038/nature04626

E. Braaten, H.-W. Hammer. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006).

https://doi.org/10.1016/j.physrep.2006.03.001

K.S. Chichak et al. Molecular Borromean Rings. Science 304, 1308 (2004).

https://doi.org/10.1126/science.1096914

C. Rovelli, F. Vidotto. In: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, 2014) [ISBN: 9781107706910].

https://doi.org/10.1017/CBO9781107706910

C. Kassel. Quantum Groups (Springer-Verlag, 1995) [ISBN: 9780387943701].

https://doi.org/10.1007/978-1-4612-0783-2

D.A. Tomalia, J.B. Christensen, U. Boas. Dendrimers, Dendrons and Dendritic Polymers: Discovery, Applications and the Future (Cambridge University Press, 2012) [ISBN: 978-0-521-51580-1].

https://doi.org/10.1017/CBO9781139048859

J. Feder. Fractals (Plenum Press, 1988) [ISBN: 978-0306428517].

https://doi.org/10.1007/978-1-4899-2124-6

A.I. Bobenko, U. Pinkall, B.A. Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19, 2155 (2015).

https://doi.org/10.2140/gt.2015.19.2155

X.D. Gu, F. Luo, J. Sun, T. Wu. A discrete uniformization theorem for polyhedral surfaces. J. Differential Geom. 109, 223 (2018).

https://doi.org/10.4310/jdg/1527040872

N. Manton, P. Sutcliffe. Topological Solitons (Cambridge University Press, 2004) [ISBN: 9780511617034].

https://doi.org/10.1017/CBO9780511617034

A. Nazarenko. Time level splitting in quantum ChernSimons gravity. Class. Quantum Grav. 22, 2107 (2005).

https://doi.org/10.1088/0264-9381/22/11/013

A.V. Nazarenko. Area quantization of the parameter space of Riemann surface in genus two. Ukr. J. Phys. 58, 1055 (2013).

https://doi.org/10.15407/ujpe58.11.1055

N.E. Hurt. Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory (D. Reidel Publishing Company, 1983) [ISBN: 978-9027714268].

https://doi.org/10.1007/978-94-009-6963-6_18

K. Matsumoto, H. Nishi, M. Yoshida. Automorphic functions for the Whitehead-link-complement group. Kyushu University Preprint Series in Mathematics (2005).

O. Rodrigues. Des lois g'eom'etriques qui r'egissent les d'eplacements d'un syst'eme solide dans l'espace, et de la variation des coordonn'ees provenant de ces d'eplacements consid'er'es ind'ependamment des causes qui peuvent les produire. J. de Math'ematiques Pures et Appliqu'ees de Liouville 5, 380 (1840).

G. Higman, B.H. Neumann, H. Neumann. Embedding theorems for groups. J. London Math. Soc. 24, 247 (1949).

https://doi.org/10.1112/jlms/s1-24.4.247

J.B. Wilker. The quaternion formalism for M¨obius groups in four or fewer dimensions. Lin. Alg. Appl. 190, 99 (1993).

https://doi.org/10.1016/0024-3795(93)90222-A

C. Adams, A. Calderon, N. Mayer. Generalized bipyramids and hyperbolic volumes of alternating k-uniform tiling links. Topol. Appl. 271, 107045 (2020).

https://doi.org/10.1016/j.topol.2019.107045

J.G. Ratcliffe, S.T. Tschantz. Cusp transitivity in hyperbolic 3-manifolds. Geom. Dedicata 212, 141 (2021).

https://doi.org/10.1007/s10711-020-00552-4

N.R. Hoffman. Cusp types of quotients of hyperbolic knot complements. Proc. Amer. Math. Soc. Ser. B 9, 336 (2022).

https://doi.org/10.1090/bproc/104

A.V. Nazarenko. Directed random walk on the lattices of genus two. Int. J. Mod. Phys. B 25, 3415 (2011).

https://doi.org/10.1142/S0217979211101831

O. Knill. Probability and Stochastic Processes with Applications (Overseas Press, 2009) [ISBN: 978-8189938406].

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Edited by M. Abramowitz, I.A. Stegun (Dover Publications, 1972) [ISBN: 97803181173].

A. Papadopoulos, S. Yamada. Deforming hyperbolic hexagons with applications to the arc and the Thurston metrics on Teichm¨uller spaces. Monatsh. Math. 182, 913 (2017).

https://doi.org/10.1007/s00605-017-1023-4

C.T. McMullen. Braid groups and Hodge theory. Math. Ann. 355, 893 (2013).

https://doi.org/10.1007/s00208-012-0804-2

B. Farb, D. Margalit. A Primer on Mapping Class Groups (Princeton University Press, 2012) [ISBN: 9780691147949].

https://doi.org/10.1515/9781400839049

S. Albeverio, S. Rabanovich. On a class of unitary representations of the braid groups B3 and B4. Bul. Sci. Math. 153, 35 (2019).

https://doi.org/10.1016/j.bulsci.2019.01.014

S. Albeverio, A. Kosyak. q-Pascal's triangle and irreducible representations of the braid group B3 in arbitrary dimension. ArXiv: 0803.2778 [math.QA].

C. Rovelli, L. Smolin. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995).

https://doi.org/10.1016/0550-3213(95)00150-Q

F. Luo. Rigidity of polyhedral surfaces, I. J. Differential Geom. 96, 241 (2014).

https://doi.org/10.4310/jdg/1393424919

Published

2024-08-27

How to Cite

Nazarenko, A. A., & Nazarenko, A. (2024). Structures Associated with the Borromean Rings’ Complement in the Poincaré Ball. Ukrainian Journal of Physics, 69(7), 498. https://doi.org/10.15407/ujpe69.7.498

Issue

Section

Non-Euclidean Geometry in Modern Physics and Mathematics