Divergences in the Effective Loop Interaction of the Chern–Simons Bosons with Leptons. The Unitary Gauge Case

Authors

DOI:

https://doi.org/10.15407/ujpe69.12.897

Keywords:

beyond the Standard Model, extensions of gauge sector, Chern–Simons theories

Abstract

We will consider the extension of the Standard Model (SM) with Chern–Simons type interaction. This extension has a new vector massive boson (Chern–Simons bosons). There is no direct interaction between the Chern–Simons bosons and fermions of the SM. Using only threeparticle dimension-4 interaction of the Chern–Simons bosons with vector bosons of the SM, we consider effective loop interaction of a new vector boson with leptons. We consider the renormalizability of this loop interaction and conclude that, for the computation of loop diagrams in the unitary gauge, we can not eliminate the divergences in the effective interaction of the Chern–Simons bosons with leptons.

References

W.N. Cottingham, D.A. Greenwood. An Introduction to the Standard Model of Particle Physics (Cambridge University Press, 2023) [ISBN: 978-1-00-940168-5].

https://doi.org/10.1017/9781009401685

S.M. Bilenky, S.T. Petcov. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 59, 671 (1987).

https://doi.org/10.1103/RevModPhys.59.671

A. Strumia, F. Vissani. Neutrino masses and mixings and... . arXiv:hep-ph/0606054 (2006).

P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782, 633 (2018).

https://doi.org/10.1016/j.physletb.2018.06.019

G. Steigman. Observational tests of antimatter cosmologies. Ann. Rev. Astron. Astrophys. 14, 339 (1976).

https://doi.org/10.1146/annurev.aa.14.090176.002011

A. Riotto, M. Trodden. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

https://doi.org/10.1146/annurev.nucl.49.1.35

L. Canetti, M. Drewes, M. Shaposhnikov. Matter and antimatter in the universe. New J. Phys. 14, 095012 (2012).

https://doi.org/10.1088/1367-2630/14/9/095012

P.J.E. Peebles. Dark matter. Proc. Nat. Acad. Sci. 112, 2246 (2015).

https://doi.org/10.1073/pnas.1308786111

V. Lukovic, P. Cabella, N. Vittorio. Dark matter in cosmology. Int. J. Mod. Phys. A 29, 1443001 (2014).

https://doi.org/10.1142/S0217751X14430015

G. Bertone, D. Hooper. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

https://doi.org/10.1103/RevModPhys.90.045002

T. Golling et al. Physics at a 100 TeV pp collider: beyond the standard model phenomena. arXiv:1606.00947 (2016).

A. Abada et al. FCC physics opportunities: Future circular collider conceptual design report, Volume 1. Eur. Phys. J. C 79, 474 (2019).

https://doi.org/10.2172/1527436

V.M. Gorkavenko. Search for hidden particles in intensity frontier experiment SHiP. Ukr. J. Phys. 64, 689 (2019).

https://doi.org/10.15407/ujpe64.8.689

J. Beacham et al. Physics beyond colliders at CERN: Beyond the standard model working group report. J. Phys. G 47, 010501 (2020).

https://doi.org/10.1088/1361-6471/ab4cd2

G. Lanfranchi, M. Pospelov, P. Schuster. The search for feebly interacting particles. Ann. Rev. Nucl. Part. Sci. 71, 279 (2021).

https://doi.org/10.1146/annurev-nucl-102419-055056

D. Curtin et al. Long-lived particles at the energy frontier: The MATHUSLA physics case. Rept. Prog. Phys. 82, 116201 (2019).

S. Cerci et al. FACET: A new long-lived particle detector in the very forward region of the CMS experiment. arXiv:2201.00019 (2021).

https://doi.org/10.1007/JHEP06(2022)110

A. Ariga et al. Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC. arXiv:1811.10243 (2018) [REPORT NUMBER: CERN-LHCC-2018-030, LHCC-I-032, UCI-TR-2018-18, KYUSHU-RCAPP-2018-05].

A. Ariga et al. FASER's physics reach for long-lived particles. Phys. Rev. D 99, 095011 (2019).

https://doi.org/10.1103/PhysRevD.99.095011

M. Anelli et al. A facility to search for hidden particles (SHiP) at the CERN SPS. arXiv:1504.04956 (2015).

S. Alekhin et al. A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys. 79, 124201 (2016).

P. Mermod. Prospects of the SHiP and NA62 experiments at CERN for hidden sector searches. PoS NuFact2017, 139 (2017).

https://doi.org/10.22323/1.295.0139

E. Cortina Gil et al. Search for heavy neutral lepton production in K+ decays. Phys. Lett. B 778, 137 (2018).

M. Drewes, J. Hajer, J. Klaric, G. Lanfranchi. NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP 07, 105 (2018).

https://doi.org/10.1007/JHEP07(2018)105

R. Acciarri et al. Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE): Conceptual design report, Volume 2: The physics program for DUNE at LBNF. arXiv:1512.06148 (2015) [REPORT NUMBER: FERMILAB-DESIGN-2016-02].

B. Abi et al. Prospects for beyond the Standard Model physics searches at the deep underground neutrino experiment. Eur. Phys. J. C 81, 322 (2021).

V. Gorkavenko, B.K. Jashal, V. Kholoimov, Y. Kyselov, D. Mendoza, M. Ovchynnikov et al. LHCb potential to discover long-lived new physics particles with lifetimes above 100 ps. Eur. Phys. J. C 84, 608 (2024).

https://doi.org/10.1140/epjc/s10052-024-12906-3

B. Patt, F. Wilczek. Higgs-field portal into hidden sectors. arXiv:hep-ph/0605188 (2006).

F. Bezrukov, D. Gorbunov. Light inflaton Hunter's guide. JHEP 05, 010 (2010).

https://doi.org/10.1007/JHEP05(2010)010

I. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko, M. Ovchynnikov, A. Sokolenko. Phenomenology of GeVscale scalar portal. JHEP 11, 162 (2019).

https://doi.org/10.1007/JHEP11(2019)162

R.D. Peccei, H.R. Quinn. CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977).

https://doi.org/10.1103/PhysRevLett.38.1440

S. Weinberg. A new light Boson? Phys. Rev. Lett. 40, 223 (1978).

https://doi.org/10.1103/PhysRevLett.40.223

F. Wilczek. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978).

https://doi.org/10.1103/PhysRevLett.40.83

K. Choi, S.H. Im, C.S. Shin. Recent progress in physics of axions or axion-like particles. arXiv:2012.05029 (2020).

T. Asaka, M. Shaposhnikov. The vMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17 (2005).

https://doi.org/10.1016/j.physletb.2005.06.020

T. Asaka, S. Blanchet, M. Shaposhnikov. The nuMSM, dark matter and neutrino masses. Phys. Lett. B 631, 151 (2005).

https://doi.org/10.1016/j.physletb.2005.09.070

K. Bondarenko, A. Boyarsky, D. Gorbunov, O. Ruchayskiy. Phenomenology of GeV-scale heavy neutral leptons. JHEP 11, 032 (2018).

https://doi.org/10.1007/JHEP11(2018)032

A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy. Sterile neutrino dark matter. Prog. Part. Nucl. Phys. 104, 1 (2019).

https://doi.org/10.1016/j.ppnp.2018.07.004

L.B. Okun. Limits of electrodynamics: Paraphotons? Sov. Phys. JETP 56, 502 (1982).

B. Holdom. Two U(1)'s and epsilon charge shifts. Phys. Lett. B 166, 196 (1986).

https://doi.org/10.1016/0370-2693(86)91377-8

P. Langacker. The physics of heavy Z′ gauge bosons. Rev. Mod. Phys. 81, 1199 (2009).

https://doi.org/10.1103/RevModPhys.81.1199

I. Antoniadis, E. Kiritsis, T.N. Tomaras. A D-brane alternative to unification. Phys. Lett. B 486, 186 (2000).

https://doi.org/10.1016/S0370-2693(00)00733-4

C. Coriano, N. Irges, E. Kiritsis. On the effective theory of low scale orientifold string vacua. Nucl. Phys. B 746, 77 (2006).

https://doi.org/10.1016/j.nuclphysb.2006.04.009

P. Anastasopoulos, M. Bianchi, E. Dudas, E. Kiritsis. Anomalies, anomalous U(1)'s and generalized Chern-Simons terms. JHEP 11, 057 (2006).

https://doi.org/10.1088/1126-6708/2006/11/057

J.A. Harvey, C.T. Hill, R.J. Hill. Standard Model Gauging of the Wess-Zumino-Witten Term: Anomalies, Global currents and pseudo-Chern-Simons interactions. Phys. Rev. D 77, 085017 (2008).

https://doi.org/10.1103/PhysRevD.77.085017

P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi, Y.S. Stanev. Minimal Anomalous U(1)-prime Extension of the MSSM. Phys. Rev. D, 78, 085014 (2008).

https://doi.org/10.1103/PhysRevD.78.085014

J. Kumar, A. Rajaraman, J.D. Wells. Probing the Green-Schwarz Mechanism at the large hadron collider. Phys. Rev. D 77, 066011 (2008).

https://doi.org/10.1103/PhysRevD.77.066011

I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy, J.D. Wells. Anomaly driven signatures of new invisible physics at the large hadron collider. Nucl. Phys. B 824, 296 (2010).

https://doi.org/10.1016/j.nuclphysb.2009.09.009

H. Ruegg, M. Ruiz-Altaba. The Stueckelberg field. Int. J. Mod. Phys. A 19, 3265 (2004).

https://doi.org/10.1142/S0217751X04019755

G.D. Kribs, G. Lee, A. Martin. Effective field theory of St¨uckelberg vector bosons. Phys. Rev. D 106, 055020 (2022).

https://doi.org/10.1103/PhysRevD.106.055020

J.A. Dror, R. Lasenby, M. Pospelov. New constraints on light vectors coupled to anomalous currents. Phys. Rev. Lett. 119, 141803 (2017).

https://doi.org/10.1103/PhysRevLett.119.141803

J.A. Dror, R. Lasenby, M. Pospelov. Dark forces coupled to nonconserved currents. Phys. Rev. D 96, 075036 (2017).

https://doi.org/10.1103/PhysRevD.96.075036

Y. Borysenkova, P. Kashko, M. Tsarenkova, K. Bondarenko, V. Gorkavenko. Production of Chern-Simons bosons in decays of mesons. J. Phys. G, 49, 085003 (2022).

https://doi.org/10.1088/1361-6471/ac77a7

N.N. Bogolyubov, D.V. Shirkov. Quantum Fields (Benjamin Cummings, 1983).

T.P. Cheng, L.F. Li. Gauge Theory of Elementary Particle Physics (Oxford University Press, 1984) [ISBN: 978-0-19-851961-4, 978-0-19-851961-4].

N. Irges, F. Koutroulis. Renormalization of the Abelian-Higgs model in the Rξ and unitary gauges and the physicality of its scalar potential. Nucl. Phys. B 924, 178 (2017). Nucl. Phys. B 938, 957 (2019) (erratum).

https://doi.org/10.1016/j.nuclphysb.2018.09.025

Tai Tsun Wua, Sau Lan Wub. Comparing the Rξ gauge and the unitary gauge for the standard model: An example. Nucl. Phys. B 914, 421 (2017).

https://doi.org/10.1016/j.nuclphysb.2016.11.007

I. Boradjiev, E. Christova, H. Eberl. Dispersion theoretic calculation of the H → Z + γ amplitude. Phys. Rev. D 97, 073008 (2018).

https://doi.org/10.1103/PhysRevD.97.073008

Downloads

Published

2024-12-14

How to Cite

Borysenkova, Y., Gorkavenko, V., Hrynchak, I., Khasai, O., & Tsarenkova, M. (2024). Divergences in the Effective Loop Interaction of the Chern–Simons Bosons with Leptons. The Unitary Gauge Case. Ukrainian Journal of Physics, 69(12), 897. https://doi.org/10.15407/ujpe69.12.897

Issue

Section

Fields and elementary particles