Semi-Symmetric Metric Gravity

Authors

  • L. Csillag Department of Physics, Babes-Bolyai University
  • T. Harko Department of Physics, Babes-Bolyai University, Astronomical Observatory

DOI:

https://doi.org/10.15407/ujpe69.7.484

Keywords:

cosmological models, semi-symmetric metric gravity, general relativity, torsion tensor, Hubble function

Abstract

We will study a geometric extension of general relativity, which is based on a connection with a special type of torsion. This connection satisfies that its torsion tensor is fully determined by a vectorial degree of freedom, and it was first introduced by Friedmann and Schouten. We explore its physical implications by presenting three cosmological models within the considered geometric extension of GR, and compare the predictions of the models with those of ΛCDM and the observational data of the Hubble function. Our results show that the geometry envisioned by Friedmann could explain the observational data for the Hubble function without the need of dark energy.

References

A. Einstein. Die feldgleichungen der gravitation. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften zur Berlin, page 844, 1915.

C.M. Will. The confrontation between general relativity and experiment. Living Reviews in Relativity 17, 4 (2014).

https://doi.org/10.12942/lrr-2014-4

B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

A. Friedmann, J.A. Schouten. ¨Uber die geometrie der halbsymmetrischen ¨ubertragung. Math. Zeitschr. 21, 211 (1924).

https://doi.org/10.1007/BF01187468

J.A. Schouten. Ricci Calculus: An Introduction to Tensor Analysis and Geometrical Applications (Springer, 1954).

https://doi.org/10.1007/978-3-662-12927-2

K. Yano. On semi-symmetric metric connection. Revue Roumaine de Math'ematique Pures et Appliqu'ees. Sci. Res. 15, 1579 (1970).

E. Zangiabadi, Z. Nazari. Semi-riemannian manifold with semi-symmetric connections. J. Geometry and Physics 169, 104341 (2021).

https://doi.org/10.1016/j.geomphys.2021.104341

Y. Akrami, F. Arroja, M. Ashdown et al. Planck 2018 results. I. Overview and the cosmological legacy of planck. Astron. Astrophys. 641, A1 (2020).

A. Bouali, H. Chaudhary, T. Harko, F.S.N. Lobo, T. Ouali, M.A.S. Pinto. Observational constraints and cosmological implications of scalar-tensor f (R, T) gravity. MNRAS 526, 4192 (2023).

https://doi.org/10.1093/mnras/stad2998

Published

2024-08-27

How to Cite

Csillag, L., & Harko, T. (2024). Semi-Symmetric Metric Gravity. Ukrainian Journal of Physics, 69(7), 484. https://doi.org/10.15407/ujpe69.7.484

Issue

Section

Non-Euclidean Geometry in Modern Physics and Mathematics