Degrees of Freedom in Modified Teleparallel Gravity

Authors

  • A. Golovnev Centre for Theoretical Physics, The British University in Egypt

DOI:

https://doi.org/10.15407/ujpe69.7.456

Keywords:

modified teleparallel gravity, (pseudo)Riemannian manifold, New General Relativity (New GR) models, quantum-field-theory

Abstract

I discuss the issue of degrees of freedom in modified teleparallel gravity. These theories do have an extra structure on top of the usual (pseudo)Riemannian manifold, that of a flat parallel transport. This structure is absolutely abstract and unpredictable (pure gauge) in GRequivalent models, however, it becomes physical upon modifications. The problem is that, in the most popular models, this local symmetry is broken but not stably So, hence the infamous strong coupling issues. The Hamiltonian analyses become complicated and with contradictory results. A funny point is that what we see in available linear perturbation treatments of f (T) gravity is much closer to the analysis with less dynamical degrees of freedom which has got a well-known mistake in it, while the more accurate work predicts much more of dynamics than what has ever been seen till now. I discuss possible reasons behind this puzzle, and also argue in favor of studying the most general New GR models which are commonly ignored due to suspicion of ghosts.

References

Jose Beltr'an Jim'enez, L. Heisenberg, T.S. Koivisto. The Geometrical Trinity of gravity. Universe 5 (2019) 173. arXiv:1903.06830.

https://doi.org/10.3390/universe5070173

D. Aguiar Gomes, Jose Beltr'an Jim'enez, T.S. Koivisto. Energy and entropy in the Geometrical Trinity of gravity. Phys. Rev. D 107 (2023) 024044; arXiv:2205.09716

https://doi.org/10.1103/PhysRevD.107.024044

D. Aguiar Gomes, Jose Beltr'an Jim'enez, T.S. Koivisto. General parallel cosmology. J. Cosmol. Astropart. Phys. 12, 010 (2023). arXiv:2309.08554.

https://doi.org/10.1088/1475-7516/2023/12/010

A. Golovnev. A pamphlet against the energy. arXiv: 2306.12895.

P. van Nieuwenhuizen. On ghost-free tensor lagrangians and linearized gravitation. Nuclear Physics B 60, 478 (1973).

https://doi.org/10.1016/0550-3213(73)90194-6

A. Golovnev, A.N. Semenova, V.P. Vandeev. Gravitational waves in New General Relativity. J. Cosmol. Astropart. Phys. 01, 003 (2024). arXiv:2309.02853.

https://doi.org/10.1088/1475-7516/2024/01/003

R. Ferraro, F. Fiorini. Modified teleparallel gravity: inflation without inflaton. Phys. Rev. D 75, 084031 (2007). arXiv:gr-qc/0610067.

https://doi.org/10.1103/PhysRevD.75.084031

R. Ferraro, F. Fiorini. Remnant group of local Lorentz transformations in f (T) theories. Phys. Rev. D 91, 064019 (2015). arXiv:1412.3424.

https://doi.org/10.1103/PhysRevD.91.064019

A. Golovnev, M.J. Guzm'an. Foundational issues in f (T) gravity theory. Intern. J. Geomet. Meth. Modern Phys. 18, 2140007 (2021). arXiv:2012.14408.

https://doi.org/10.1142/S0219887821400077

R. Ferraro, M.J. Guzm'an. Hamiltonian formulation of teleparallel gravity. Phys. Rev. D 94, 104045 (2016). arXiv:1609.06766.

https://doi.org/10.1103/PhysRevD.94.104045

K. Hayashi, T. Shirafuji. New general relativity. Phys. Rev. D 19, 3524 (1979).

https://doi.org/10.1103/PhysRevD.19.3524

A. Golovnev, A.N. Semenova, V.P. Vandeev. Static spherically symmetric solutions in New General Relativity. Classical and Quantum Gravity 41, 055009 (2024). arXiv:2305.03420.

https://doi.org/10.1088/1361-6382/ad2109

A. Golovnev, A.N. Semenova, V.P. Vandeev. Conformal transformations and cosmological perturbations in New General Relativity. J. Cosmol. Astropart. Phys. 04, 064 (2024). arXiv:2312.16021.

https://doi.org/10.1088/1475-7516/2024/04/064

H. Asuk¨ula, S. Bahamonde, M. Hohmann, V. Karanasou, Ch. Pfeifer, J.L. Rosa. Spherically symmetric vacuum solutions in 1-Parameter New General Relativity and their phenomenology. arXiv:2311.17999.

J. Beltran Jimenez, K.F. Dialektopoulos. Non-linear obstructions for consistent New General Relativity. J. Cosmol. Astropart. Phys. 01, 018 (2020). arXiv:1907.10038.

https://doi.org/10.1088/1475-7516/2020/01/018

A. Golovnev, T. Koivisto. Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 11, 012 (2018). arXiv:1808.05565.

https://doi.org/10.1088/1475-7516/2018/11/012

A. Golovnev. Perturbations in f (T) cosmology and the spin connection. J. Cosmol. Astropart. Phys. 04, 014 (2020). arXiv:2001.10015.

https://doi.org/10.1088/1475-7516/2020/04/014

A. Golovnev, M.J. Guzm'an. Bianchi identities in f (T) gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 810, 135806 (2020). arXiv:2006.08507.

https://doi.org/10.1016/j.physletb.2020.135806

S. Bahamonde, D. Blixt, K.F. Dialektopoulos, A. Hell. Revisiting stability in New General Relativity. arXiv: 2404.02972.

A. Golovnev. On the degrees of freedom count on singular phase space submanifolds. arXiv:2311.10690

D. Blixt, R. Ferraro, A. Golovnev, M.J. Guzm'an. Lorentz gauge-invariant variables in torsion-based theories of gravity. Phys. Rev. D 105, 084029 (2022). arXiv:2201.11102.

https://doi.org/10.1103/PhysRevD.105.084029

C. Deffayet, A. Held, Sh. Mukohyama, A. Vikman. Global and local stability for ghosts coupled to positive energy degrees of freedom. J. Cosmol. Astropart. Phys. 11, 031 (2023). arXiv:2305.09631.

https://doi.org/10.1088/1475-7516/2023/11/031

A. Golovnev. Issues of Lorentz-invariance in f (T) gravity and calculations for spherically symmetric solutions. Classical and Quantum Gravity 38, 197001 (2021). arXiv:2105.08586.

https://doi.org/10.1088/1361-6382/ac2136

C. Bejarano, R. Ferraro, M.J. Guzm'an. Kerr geometry in f (T) gravity. Eur. Phys. J. C 75, 77 (2015). arXiv:1412.0641.

https://doi.org/10.1140/epjc/s10052-015-3288-x

C. Bejarano, R. Ferraro, M.J. Guzm'an. McVittie solution in f (T) gravity. Eur. Phys. J. C 77, 825 (2017). arXiv:1707.06637.

https://doi.org/10.1140/epjc/s10052-017-5394-4

A. Golovnev, M.J. Guzm'an. Non-trivial Minkowski backgrounds in f (T) gravity. Phys. Rev. D 103, 044009 (2021); arXiv:2012.00696.

https://doi.org/10.1103/PhysRevD.103.044009

K. Izumi, Y.Ch. Ong. Cosmological perturbation in f (T) gravity revisited. J. Cosmol. Astropart. Phys. 06, 029 (2013). arXiv:1212.5774.

https://doi.org/10.1088/1475-7516/2013/06/029

S. Bahamonde, K.F. Dialektopoulos, M. Hohmann, J. Levi Said, Ch. Pfeifer, E.N. Saridakis. Perturbations in nonflat cosmology for f (T) gravity. Eur. Phys. J. C 83, 193 (2023). arXiv:2203.00619.

https://doi.org/10.1140/epjc/s10052-023-11322-3

M. Li, R.-X. Miao, Y.-G. Miao. Degrees of freedom of f (T) gravity. J. High Energy Phys. 07, 108 (2011). arXiv:1105.5934.

https://doi.org/10.1007/JHEP07(2011)108

R. Ferraro, M.J. Guzm'an. Hamiltonian formalism for f (T) gravity. Phys. Rev. D 97, 104028 (2018). arXiv:1802.02130.

M. Blagojevi'c, J.M. Nester. Local symmetries and physical degrees of freedom in f (T) gravity: A Dirac Hamiltonian constraint analysis. Phys. Rev. D 102, 064025 (2020). arXiv:2006.15303.

https://doi.org/10.1103/PhysRevD.102.064025

J. Bhattacharyya, A. Coates, M. Colombo, A.E. G¨umr¨uk¸c¨uo˘glu, Th.P. Sotiriou. Revisiting the cuscuton as a Lorentz-violating gravity theory. Phys. Rev. D 97, 064020 (2018). arXiv:1612.01824.

https://doi.org/10.1103/PhysRevD.97.064020

S. Bahamonde, A. Golovnev, M.J. Guzm'an, J. Levi Said, Ch. Pfeifer. Black holes in f (T, B) gravity: Exact and perturbed solutions. J. Cosmol. Astropart. Phys. 01, 037 (2022). arXiv:2110.04087.

https://doi.org/10.1088/1475-7516/2022/01/037

A. Awad, A. Golovnev, M.J. Guzm'an, W. El Hanafy. Revisiting diagonal tetrads: New Black Hole solutions in f (T) gravity. Eur. Phys. J. C 82, 972 (2022). arXiv:2207.00059.

https://doi.org/10.1140/epjc/s10052-022-10939-0

Y.Ch. Ong, K. Izumi, J.M. Nester, P. Chen. Problems with propagation and time evolution in f (T) gravity. Phys. Rev. D 88, 024019 (2013). arXiv:1303.0993.

K. Izumi, J.-A. Gu, Y.Ch. Ong. Acausality and nonunique evolution in generalized teleparallel gravity. Phys. Rev. D 89, 084025 (2014). arXiv:1309.6461.

https://doi.org/10.1103/PhysRevD.89.084025

P. Chen, K. Izumi, J.M. Nester, Y.Ch. Ong. Remnant symmetry, propagation and evolution in f (T) gravity. Phys. Rev. D 91, 064003 (2015). arXiv:1412.8383.

https://doi.org/10.1103/PhysRevD.91.064003

Published

2024-08-27

How to Cite

Golovnev, A. (2024). Degrees of Freedom in Modified Teleparallel Gravity. Ukrainian Journal of Physics, 69(7), 456. https://doi.org/10.15407/ujpe69.7.456

Issue

Section

Non-Euclidean Geometry in Modern Physics and Mathematics