Beyond Einstein’s General Relativity: Hybrid Metric-Palatini Gravity

Authors

  • F.S.N. Lobo Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Universidade de Lisboa, and Departamento de F´ısica, Faculdade de Ciˆencias da Universidade de Lisboa

DOI:

https://doi.org/10.15407/ujpe69.7.439

Keywords:

general relativity, modified gravity, hybrid metric-Palatini gravity

Abstract

It has been established that both metric and Palatini versions of f (R) gravity have interesting features, but also manifest several downsides. A hybrid combination of theories, containing elements from both formalisms, turns out to be very successful in accounting for the observed phenomenology and it is able to avoid some drawbacks of the original approaches. Here, we explore the formulation in a dynamically equivalent scalar-tensor form of this hybrid metricPalatini approach. We present several of its main achievements, such as, passing the Solar System observational tests even if the scalar field is very light or massless, and outline several applications to astrophysical and cosmological scenarios. Furthermore, we also explore the viability of generalized hybrid metric-Palatini gravitational theories.

References

S. Capozziello. Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002).

https://doi.org/10.1142/S0218271802002025

S. Capozziello, M. De Laurentis. Extended theories of gravity. Phys. Rept. 509, 167 (2011).

https://doi.org/10.1016/j.physrep.2011.09.003

S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner. Is cosmic speed - up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004).

https://doi.org/10.1103/PhysRevD.70.043528

E.J. Copeland, M. Sami, S. Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006).

https://doi.org/10.1142/S021827180600942X

A. De Felice, S. Tsujikawa. f (R) theories. Living Rev. Rel. 13, 3 (2010).

https://doi.org/10.12942/lrr-2010-3

F.S.N. Lobo. The Dark side of gravity: Modified theories of gravity. [arXiv:0807.1640 [gr-qc]].

S. Nojiri, S.D. Odintsov. Unified cosmic history in modified gravity: From f (R) theory to Lorentz non-invariant models. Phys. Rept. 505, 59 (2011).

https://doi.org/10.1016/j.physrep.2011.04.001

P. Avelino, T. Barreiro, C.S. Carvalho, A. da Silva, F.S.N. Lobo, P. Martin-Moruno, J.P. Mimoso, N.J. Nunes, D. Rubiera-Garcia, D. Saez-Gomez et al. Unveiling the Dynamics of the Universe. Symmetry 8 (8), 70 (2016).

https://doi.org/10.3390/sym8080070

E.N. Saridakis et al. [CANTATA]. Modified Gravity and Cosmology: An Update by the CANTATA Network (Springer, 2021) [ISBN: 978-3-030-83714-3, 978-3-030-83717-4, 978-3-030-83715-0]. [arXiv:2105.12582 [gr-qc]].

G.J. Olmo. Palatini approach to modified gravity: f (R) theories and beyond. Int. J. Mod. Phys. D 20, 413 (2011).

https://doi.org/10.1142/S0218271811018925

A. Joyce, B. Jain, J. Khoury, M. Trodden. Beyond the cosmological standard model. Phys. Rept. 568, 1 (2015).

https://doi.org/10.1016/j.physrep.2014.12.002

P. Brax. Screened modified gravity. Acta Phys. Polon. B 43, 2307 (2012).

https://doi.org/10.5506/APhysPolB.43.2307

T.S. Koivisto, D.F. Mota, M. Zumalacarregui. Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett. 109, 241102 (2012).

https://doi.org/10.1103/PhysRevLett.109.241102

P. Brax, A.C. Davis, B. Li, H.A. Winther. A unified description of screened modified gravity. Phys. Rev. D 86, 044015 (2012).

https://doi.org/10.1103/PhysRevD.86.044015

T. Koivisto. The matter power spectrum in f (R) gravity. Phys. Rev. D 73, 083517 (2006).

https://doi.org/10.1103/PhysRevD.73.083517

T. Koivisto, H. Kurki-Suonio. Cosmological perturbations in the palatini formulation of modified gravity. Class. Quant. Grav. 23, 2355 (2006).

https://doi.org/10.1088/0264-9381/23/7/009

G.J. Olmo. Violation of the equivalence principle in modified theories of gravity. Phys. Rev. Lett. 98, 061101 (2007).

https://doi.org/10.1103/PhysRevLett.98.061101

G.J. Olmo. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D 77, 084021 (2008).

https://doi.org/10.1103/PhysRevD.77.084021

S. Capozziello, T. Harko, F.S.N. Lobo, G.J. Olmo. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 22, 1342006 (2013).

https://doi.org/10.1142/S0218271813420066

T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. MetricPalatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 85, 084016 (2012).

https://doi.org/10.1103/PhysRevD.85.084016

T. Harko, F.S.N. Lobo. Beyond Einstein's general relativity: Hybrid metric-Palatini gravity and curvature-matter couplings. Int. J. Mod. Phys. D 29 (13), 2030008 (2020).

https://doi.org/10.1142/S0218271820300086

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Hybrid metric-Palatini gravity. Universe 1 (2), 199 (2015).

https://doi.org/10.3390/universe1020199

T. Harko, F.S.N. Lobo. Extensions of f (R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory (Cambridge University Press, 2018) [ISBN: 978-1-108-42874-3, 978-1-108-58457-9].

https://doi.org/10.1017/9781108645683

T. Koivisto. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav. 23, 4289 (2006).

https://doi.org/10.1088/0264-9381/23/12/N01

G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 72, 063505 (2005).

https://doi.org/10.1103/PhysRevD.72.063505

O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo. Extra force in f (R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007).

https://doi.org/10.1103/PhysRevD.75.104016

O. Bertolami, J. Paramos, T. Harko, F.S.N. Lobo. Nonminimal curvature-matter couplings in modified gravity. [arXiv:0811.2876 [gr-qc]].

O. Bertolami, F.S.N. Lobo, J. Paramos. Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D 78, 064036 (2008).

https://doi.org/10.1103/PhysRevD.78.064036

O. Bertolami, J. Paramos. Do f (R) theories matter? Phys. Rev. D 77, 084018 (2008).

https://doi.org/10.1103/PhysRevD.77.084018

T. Harko, T.S. Koivisto, F.S.N. Lobo. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A 26, 1467 (2011).

https://doi.org/10.1142/S0217732311035869

T. Harko, F.S.N. Lobo. f (R, Lm) gravity. Eur. Phys. J. C 70, 373 (2010).

https://doi.org/10.1140/epjc/s10052-010-1467-3

G.J. Olmo, D. Rubiera-Garcia. Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B 740, 73 (2015).

https://doi.org/10.1016/j.physletb.2014.11.034

Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi. Further matters in space-time geometry: f (R, T, Rμν Tμν) gravity. Phys. Rev. D 88 (4), 044023 (2013).

https://doi.org/10.1103/PhysRevD.88.044024

T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov. f (R, T) gravity. Phys. Rev. D 84, 024020 (2011).

https://doi.org/10.1103/PhysRevD.84.024020

S.D. Odintsov, D. S'aez-G'omez. f (R, T, Rμν, Tμν) gravity phenomenology and ΛCDM universe. Phys. Lett. B 725, 437 (2013).

https://doi.org/10.1016/j.physletb.2013.07.026

T. Harko, F.S.N. Lobo. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D 86, 124034 (2012).

https://doi.org/10.1103/PhysRevD.86.124034

I. Ayuso, J. Beltran Jimenez, 'A. de la Cruz-Dombriz. Consistency of universally nonminimally coupled f (R, T, Rμν, Tμν) theories. Phys. Rev. D 91 (10), 104003 (2015).

N. Tamanini, T.S. Koivisto. Consistency of nonminimally coupled f (R) gravity. Phys. Rev. D 88 (6), 064052 (2013).

https://doi.org/10.1103/PhysRevD.88.064019

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Cosmology of hybrid metric-Palatini f (X)-gravity. JCAP 04, 011 (2013).

https://doi.org/10.1088/1475-7516/2013/04/011

G.J. Olmo. The Gravity Lagrangian according to solar system experiments. Phys. Rev. Lett. 95, 261102 (2005).

https://doi.org/10.1103/PhysRevLett.95.261102

G.J. Olmo. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 72, 083505 (2005).

https://doi.org/10.1103/PhysRevD.72.083505

T.S. Koivisto. Cosmology of modified (but second order) gravity. AIP Conf. Proc. 1206, 79 (2010).

https://doi.org/10.1063/1.3292516

T.S. Koivisto. The post-Newtonian limit in C-theories of gravitation. Phys. Rev. D 84, 121502 (2011).

https://doi.org/10.1103/PhysRevD.84.121502

L. Iorio. Gravitational anomalies in the solar system? Int. J. Mod. Phys. D 24 (6), 1530015 (2015).

https://doi.org/10.1142/S0218271815300153

R.P. Woodard. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 720, 403 (2007).

https://doi.org/10.1007/978-3-540-71013-4_14

T.S. Koivisto, N. Tamanini. Ghosts in pure and hybrid formalisms of gravity theories: A unified analysis. Phys. Rev. D 87 (10), 104030 (2013).

https://doi.org/10.1103/PhysRevD.87.104030

T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012).

https://doi.org/10.1103/PhysRevLett.108.031101

T. Biswas, T. Koivisto, A. Mazumdar. Nonlocal theories of gravity: The flat space propagator. [arXiv:1302.0532 [gr-qc]].

N. Tamanini, C.G. Boehmer. Generalized hybrid metricPalatini gravity. Phys. Rev. D 87 (8), 084031 (2013).

https://doi.org/10.1103/PhysRevD.87.084031

E.E. Flanagan. Higher order gravity theories and scalar tensor theories. Class. Quant. Grav. 21, 417 (2003).

https://doi.org/10.1088/0264-9381/21/2/006

J.L. Rosa, S. Carloni, J.P.d. Lemos, F.S.N. Lobo. Cosmological solutions in generalized hybrid metric-Palatini gravity. Phys. Rev. D 95 (12), 124035 (2017).

https://doi.org/10.1103/PhysRevD.95.124035

N.A. Lima. Dynamics of linear perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D 89 (8), 083527 (2014).

https://doi.org/10.1103/PhysRevD.89.083527

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. JCAP 07, 024 (2013).

https://doi.org/10.1088/1475-7516/2013/07/024

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys. 50-52, 65 (2013).

https://doi.org/10.1016/j.astropartphys.2013.09.005

P. M. S'a. Unified description of dark energy and dark matter within the generalized hybrid metric-Palatini theory of gravity. Universe 6 (6), 78 (2020).

https://doi.org/10.3390/universe6060078

S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 86, 127504 (2012).

https://doi.org/10.1103/PhysRevD.86.127504

J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo. Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 98 (6), 064054 (2018).

https://doi.org/10.1103/PhysRevD.98.064054

M. Kord Zangeneh, F.S.N. Lobo. Dynamic wormhole geometries in hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (4), 285 (2021).

https://doi.org/10.1140/epjc/s10052-021-09059-y

J.L. Rosa. Double gravitational layer traversable wormholes in hybrid metric-Palatini gravity. Phys. Rev. D 104 (6), 064002 (2021).

https://doi.org/10.1103/PhysRevD.104.064002

B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Hybrid metric-Palatini stars. Phys. Rev. D 95 (4), 044031 (2017).

https://doi.org/10.1103/PhysRevD.95.044031

K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova. Spherically symmetric space-times in generalized hybrid metricPalatini gravity. Grav. Cosmol. 27 (4), 358 (2021).

https://doi.org/10.1134/S0202289321040046

T. Harko, F.S.N. Lobo, H.M.R. da Silva. Cosmic stringlike objects in hybrid metric-Palatini gravity. Phys. Rev. D 101 (12), 124050 (2020).

https://doi.org/10.1103/PhysRevD.101.124050

H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. Cosmic strings in generalized hybrid metric-Palatini gravity. Phys. Rev. D 104 (12), 124056 (2021).

https://doi.org/10.1103/PhysRevD.104.124056

H.M.R. da Silva, T. Harko, F.S.N. Lobo, J.L. Rosa. U(1) local strings in generalized hybrid metric-Palatini gravity. [arXiv:2112.05272 [gr-qc]].

T. Harko, F.S.N. Lobo, H.M.R. d. Silva. U(1) local strings in hybrid metric-Palatini gravity. [arXiv:2112.04496 [gr-qc]].

J.L. Rosa, D.A. Ferreira, D. Bazeia, F.S.N. Lobo. Thick brane structures in generalized hybrid metric-Palatini gravity. Eur. Phys. J. C 81 (1), 20 (2021).

https://doi.org/10.1140/epjc/s10052-021-08840-3

B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak. Spherically symmetric static vacuum solutions in hybrid metric-Palatini gravity. Phys. Rev. D 99 (6), 064028 (2019).

https://doi.org/10.1103/PhysRevD.99.064028

N. Avdeev, P. Dyadina, S. Labazova. Test of hybrid metric-Palatini f (R)-gravity in binary pulsars. J. Exp. Theor. Phys. 131 (4), 537 (2020).

https://doi.org/10.1134/S1063776120100039

Published

2024-08-27

How to Cite

Lobo, F. (2024). Beyond Einstein’s General Relativity: Hybrid Metric-Palatini Gravity. Ukrainian Journal of Physics, 69(7), 439. https://doi.org/10.15407/ujpe69.7.439

Issue

Section

Non-Euclidean Geometry in Modern Physics and Mathematics