Glutathione-Capped Quaternary Ag–(In,Ga)–S Quantum Dots Obtained by Colloidal Synthesis in Aqueous Solutions
DOI:
https://doi.org/10.15407/ujpe69.4.278Keywords:
colloidal synthesis, quantum dots, X-ray photoelectron spectroscopy, X-ray diffraction, optical absorption, photoluminescence, Raman spectroscopyAbstract
Ag–(In,Ga)–S quantum dots (QDs) were obtained by colloidal synthesis from aqueous solutions with different [In]/[Ga] precursor ratios in the presence of glutathione ligands under mild conditions. Size-selected fractions of the colloidal solutions were separated by the repeated centrifuging with addition of 2-propanol. The QD chemical composition determined by X-ray photoelectron spectroscopy is noticeably In-enriched with respect to the precursor ratio. The QD size estimated from the halfwidth of X-ray diffraction peaks for the non-fractioned colloidal solutions is about 2 nm. The synthesized QDs reveal a shift of the absorption edge and the photoluminescence (PL) peak maximum toward higher energies with decreasing the QD size. Experimentally measured Raman spectra of the Ag–(In,Ga)–S QDs are noticeably affected by size-related factors.
References
D. Aldakov, A. Lefran¸cois, P. Reiss. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications, J. Mater. Chem. C 1, 3756 (2013).
https://doi.org/10.1039/c3tc30273c
J. Kolny-Olesiak, H. Weller. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals, ACS Appl. Mater. Interfaces 5, 12221 (2013).
https://doi.org/10.1021/am404084d
P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, S. Tamang. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731 (2016).
https://doi.org/10.1021/acs.chemrev.6b00116
G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.T. Yong, P.N. Prasad. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116, 12234 (2016).
https://doi.org/10.1021/acs.chemrev.6b00290
W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 5, 6193 (2017).
https://doi.org/10.1039/C7TB01156C
O. Stroyuk, A. Raevskaya, N. Gaponik. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 47, 5354 (2018).
https://doi.org/10.1039/C8CS00029H
Y. Liu, F. Li, H. Huang, B. Mao, Y. Liu, Z. Kang. Optoelectronic and photocatalytic properties of I-III-VI QDs: Bridging between traditional and emerging new QDs. J. Semicond. 41, 091701 (2020).
https://doi.org/10.1088/1674-4926/41/9/091701
O. S. Oluwafemi, E. H. M. Sakho, S. Parani, T. C. Lebepe. Ternary Quantum Dots: Synthesis, Properties, and Applications (Woodhead Publishing, 2021) [ISBN: 978-0-12-818304-5].
K.E. Knowles, K.H. Hartstein, T.B. Kilburn, A. Marchioro, H.D. Nelson, P.J. Whitham, D.R. Gamelin. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem. Rev. 116, 10820 (2016).
https://doi.org/10.1021/acs.chemrev.6b00048
A. Raevskaya, V. Lesnyak, D Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R.T. Zahn, A. Eychm¨uller. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J. Phys. Chem. C 121, 9032 (2017).
https://doi.org/10.1021/acs.jpcc.7b00849
O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, S. Schulze, D.R.T. Zahn, A. Eychm¨uller. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 122, 13648 (2018).
https://doi.org/10.1021/acs.jpcc.8b00106
B. Zeng, F. Chen, Z. Liu, Z. Guan, X. Li, F, Teng, A. Tang. Seeded-mediated growth of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties. J. Mater. Chem. C 7, 1307 (2019).
https://doi.org/10.1039/C8TC05755A
O. Stroyuk, V. Dzhagan, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn. Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. J. Lumin. 215, 116630 (2019).
https://doi.org/10.1016/j.jlumin.2019.116630
O. Stroyuk, O. Raievska, D.R.T. Zahn. Unique luminescent properties of composition-/size-selected aqueous Ag-In-S and core/shell Ag-In-S/ZnS quantum dots. In: Core/Shell Quantum Dots. Edited by X. Tong and Z.M. Wang (Springer, 2020), p. 67, [ISBN: 978-3-030-46596-4].
https://doi.org/10.1007/978-3-030-46596-4_3
M.D. Regulacio, K.Y. Win, S.L. Lo, S.Y. Zhang, X. Zhang, S. Wang, M.Y. Han, Y. Zheng. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 5, 2322 (2013).
https://doi.org/10.1039/c3nr34159c
L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, M. Gao. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623 (2016).
https://doi.org/10.1021/acs.chemrev.6b00041
O. Yarema, M. Yarema, V. Wood. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 30, 1446 (2018).
https://doi.org/10.1021/acs.chemmater.7b04710
M.G. Panthani, T.A. Khan, D.K. Reid, D.J. Hellebusch, M. Rasch, J.A. Maynard, B.A. Korgel. In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSexS2−x)/ZnS core/shell quantum dots. Nano Lett. 13, 4294 (2013).
https://doi.org/10.1021/nl402054w
J.F.L. Lox, Z. Dang, V.M. Dzhagan, D. Spittel, B. Mart'in-Garc'ia, I. Moreels, D.R.T. Zahn, V. Lesnyak. Near-infrared Cu-In-Se-based colloidal nanocrystals via cation exchange. Chem. Mater. 30, 2607 (2018).
https://doi.org/10.1021/acs.chemmater.7b05187
O. Stroyuk, O. Raievska, S. Langner, C. Kupfer, A. Barabash, D. Solonenko, Y, Azhniuk, J. Hauch, A. Osvet, M. Batentschuk, D.R.T. Zahn, C.J. Brabec. Highthroughput robotic synthesis and photoluminescence characterization of aqueous multinary copper-silver indium chalcogenide quantum dots. Particle and Particle Systems Characterization 2021, 202100169 (2021).
https://doi.org/10.1002/ppsc.202100169
O. Raievska, O. Stroyuk, Y. Azhniuk, D. Solonenko, A. Barabash, C.J. Brabec, D.R.T. Zahn. Compositiondependent optical band bowing, vibrational and photochemical behavior of aqueous glutathione-capped (Cu,Ag)-In-S quantum dots. J. Chem. Phys. C 124, 19375 (2020).
https://doi.org/10.1021/acs.jpcc.0c05453
O. Stroyuk, O. Raievska, D. Solonenko, C. Kupfer, A. Osvet, M. Batentschuk, C.J. Brabec, D.R.T. Zahn. Spontaneous alloying of ultrasmall nonstoichiometric Ag-In-S and Cu-In-S quantum dots in aqueous colloidal solutions. RSC Adv. 11, 21145 (2021).
https://doi.org/10.1039/D1RA03179A
T. Uematsu, T. Doi, T. Torimoto, S. Kuwabata. Preparation of luminescent AgInS2-AgGaS2 solid solution nanoparticles and their optical properties. J. Phys. Chem. Lett. 1, 3283 (2010).
https://doi.org/10.1021/jz101295w
S. Maeda, T. Uematsu, T. Doi, J. Tokuda, T. Fujita, T. Torimoto, S. Long-term optical properties of ZnS-AgInS2 and AgInS2-AgGaS2 solid-solution semiconductor nanoparticles dispersed in polymer matrices. Electrochem. 79, 813 (2011).
https://doi.org/10.5796/electrochemistry.79.813
N. Liang, Q. He, S. Huang, M. Wang, W. Chen, M. Xu, Y. Yuan, J. Zai, N. Fang, X. Qian. AgInxGa1−xS2 solid solution nanocrystals: Synthesis, band gap tuning and photocatalytic activity. Cryst. Eng. Comm. 16, 10123 (2014).
https://doi.org/10.1039/C4CE01239A
T. Kameyama, C. Miyamae, D.K. Sharma, S. Hirata, T. Yamamoto, M. Vacha, S. Kuwabata, T. Torimoto. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl. Mater. Interfaces 10, 42844 (2018).
https://doi.org/10.1021/acsami.8b15222
M. Ichimiya, T. Kameyama, T. Torimoto, T. Uematsu, S. Kuwabata, A. Ashida. Temperature dependences of photoluminescence intensities observed from AgInGaS and AgInGaS/GaSx core-shell nanoparticles. J. Nanophoton. 14, 016010 (2020).
https://doi.org/10.1117/1.JNP.14.016010
W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata. Luminescent quaternary Ag(InxGa1ıx)S2/GaSy core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg. Chem. 60, 13101 (2021).
https://doi.org/10.1021/acs.inorgchem.1c01513
W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata. Surface ligand chemistry on quaternary Ag(InxGa1−x)S2/GaSy semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv. 4, 849 (2022).
https://doi.org/10.1039/D1NA00684C
J.H. Kim, B.Y. Kim, E.P. Jang, S.Y. Yoon, K.H. Kim, Y.R. Do, H. Yang. Synthesis of widely emission-tunable Ag-Ga-S and its quaternary derivative quantum dots. Chem. Eng. J. 347, 791 (2018).
https://doi.org/10.1016/j.cej.2018.04.167
T. Bai, X. Wang, Y. Dong, Z. Shi, S. Feng. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg. Chem. 59, 5975 (2020).
https://doi.org/10.1021/acs.inorgchem.9b03768
J. Song, Y. Zhang, Y. Dai, J. Hu, L. Zhu, X. Xu, Y. Yu, H. Li, B. Yao, H. Zhou. Polyelectrolyte-mediated nontoxic AgGaxIn1−xS2 QDs/low-density lipoprotein nanoprobe for selective 3D fluorescence imaging of cancer stem cells. ACS Appl. Mater. Interfaces 11, 9884 (2019).
https://doi.org/10.1021/acsami.9b00121
A. Raevskaya, O. Rozovik, A. Novikova, O. Selyshchev, O. Stroyuk, V. Dzhagan, I. Goryacheva, N. Gaponik, D.R.T. Zahn, A. Eychm¨uller. Luminescence and photoelectrochemical properties of size-selected aqueous copperdoped Ag-In-S quantum dots. RSC Adv. 8, 7550 (2018).
https://doi.org/10.1039/C8RA00257F
B.V. Lopushanska, Y.M. Azhniuk, I.P. Studenyak, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Optical characterization of colloidal AgInS2 quantum dots synthesized from aqueous solutions. J. Nano- and Electron. Phys. 14, 04010 (2022).
https://doi.org/10.21272/jnep.14(4).04010
A. Raevskaya, O. Rosovik, A. Kozytskiy, O. Stroyuk, V. Dzhagan, D.R.T. Zahn. Non-stoichiometric Cu-In-S/ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Adv. 6, 100145 (2016).
https://doi.org/10.1039/C6RA18313A
Y.M. Azhniuk, Ye.O. Havryliuk, B.V. Lopushanska, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Structural and optical characterisation of size-selected glutathionecapped colloidal Cu-In-S quantum dots. Ukr. J. Phys. 68, 190 (2023).
https://doi.org/10.15407/ujpe68.3.190
Y. Azhniuk, B. Lopushanska, O. Selyshchev, Y. Havryliuk, A. Pogodin, O. Kokhan, A. Ehm, V. Lopushansky, I. Studenyak, D.R.T. Zahn. Synthesis and optical properties of Ag-Ga-S quantum dots. Phys. Status Solidi B 259, 2100349 (2022).
https://doi.org/10.1002/pssb.202100349
B.V. Lopushanska, Y.M. Azhniuk, V.V. Lopushansky, S.B. Molnar, I.P. Studenyak, O.V. Selyshchev, D.R.T. Zahn. Synthesis from aqueous solutions and optical properties of Ag-In-S quantum dots. Appl. Nanosci. 10, 4909 (2020).
https://doi.org/10.1007/s13204-020-01407-w
B.V. Lopushanska, Y.M. Azhniuk, D. Solonenko, V.V. Lopushansky, I.P. Studenyak, D.R.T. Zahn. Structural and optical study of glutathione-capped Ag-In-S nanocrystals. Molec. Cryst. Liquid. Cryst. 717, 98 (2021).
https://doi.org/10.1080/15421406.2020.1860535
D.E. Nam, W.S. Song, H. Yang. Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties. J. Colloid Interface Sci. 361, 491 (2011).
https://doi.org/10.1016/j.jcis.2011.05.058
V. Dzhagan, O. Selyshchev, O. Raievska, O. Stroyuk, L. Hertling, N. Mazur, M.Y. Valakh, D.R.T. Zahn. Phonon spectra of strongly luminescent nonstoichiometric Ag-In-S, Cu-In-S, and Hg-In-S nanocrystals of small size. J. Phys. Chem. C 124, 15511 (2020).
https://doi.org/10.1021/acs.jpcc.0c03268
F. Huang, J. Zhou, J. Xu, Y. Wang. Formation of AgGaS2 nano-pyramids from Ag2S nanospheres through intermediate Ag2S-AgGaS2 heterostructures and AgGaS2 sensitized Mn2+ emission. Nanoscale 6, 2340 (2014).
https://doi.org/10.1039/c3nr04765b
C. Lin, L. Calvez, B. Bureau, H. Tao, M. Allix, Z. Hao, V. Seznec, X. Zhang, X. Zhao. Econd-order optical nonlinearity and ionic conductivity of nanocrystalline GeS2-Ga2S3-LiI glass-ceramics with improved thermo-mechanical properties. Phys. Chem. Chem. Phys. 12, 3780 (2010).
https://doi.org/10.1039/b921909a
L. Yuan, S. Lu, F. Yang, Y. Wang, Y. Jia, M. Kadhim, Y. Yu, Y. Zhang, Y. Zhao. A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. J. Mater. Sci. 54, 3174 (2019).
https://doi.org/10.1007/s10853-018-3051-4
T. Ogawa, T. Kuzuya, Y. Hamanaka, K. Sumiyama. Synthesis of Ag-In binary sulfide nanoparticles - structural tuning and their photoluminescence properties. J. Mater. Chem. 20, 2226 (2010).
https://doi.org/10.1039/b920732e
S.P. Hong, H.K. Park, J.H. Oh, H. Yang, Y.R. Do. Comparisons of the structural and optical properties of oAgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS. J. Mater. Chem. 22, 18939 (2012).
https://doi.org/10.1039/c2jm33879c
T. Torimoto, M. Tada, M. Dai, T. Kameyama, S. Suzuki, S. Kuwabata. Tunable photoelectrochemical properties of chalcopyrite AgInS2
nanoparticles size-controlled with a photoetching technique. J. Phys. Chem. C 116, 21895 (2012).
https://doi.org/10.1021/jp307305q
E. Soheyli, D. Azad, R. Sahraei, A.A. Hatamnia, A. Rostamzad, M. Alinazari. Synthesis and optimization of emission characteristics of water-dispersible Ag-In-S quantum dots and their bactericidal activity. Coll. Surf. B: Biointerfaces 182, 110389 (2019).
https://doi.org/10.1016/j.colsurfb.2019.110389
A. Delices, D. Moodelly, C. Hurot, Y. Hou, W.L. Ling, C. Saint-Pierre, D. Gasparutto, G. Nogues, P. Reiss, K. Kheng. Aqueous synthesis of DNA-functionalized nearinfrared AgInS2/ZnS core/shell quantum dots. ACS Appl. Mater. 12, 44026 (2020).
https://doi.org/10.1021/acsami.0c11337
R.S. Roth, H.S. Parker, W.S. Brower. Comments on the system Ag2S-In2S3. Mater. Res. Bull. 8, 333 (1973).
https://doi.org/10.1016/0025-5408(73)90012-3
K. Yoshino, A. Kinoshita, K. Nomoto, T. Kakeno, S. Seto, Y. Akaki, T. Ikari. Pressure dependence of AgInS2 crystals grown by hot-press method. Phys. Status Solidi C 3, 2648 (2006).
https://doi.org/10.1002/pssc.200669663
K.J. Range, B. Lindenberg, M. Keubler, R. Leeb, A. Weiss.¨ Uber den Einfluß kinetischer Hemmungen auf die Hochdruck um wandlungen des AgInS2. Z. Naturforsch. B 24, 1651 (1969).
https://doi.org/10.1515/znb-1969-1231
K.J. Range, M. Keubler, A. Weiss. Eine Hochdruckmodifikation des AgInS2 mit α-NaFeO2-Struktur. Z. Naturforsch. B 21, 1060 (1969).
https://doi.org/10.1515/znb-1969-0826
A.L. Rogach, A. Kornowski, M. Gao, A. Eychm¨uller, H. Weller. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 103, 3065 (1999).
https://doi.org/10.1021/jp984833b
O. Stroyuk, F. Weigert, A. Raevskaya, F. Spranger, C. W¨urth, U. Resch-Genger, N. Gaponik, D.R.T. Zahn. Inherently broadband photoluminescence in Ag-In-S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 123, 2632 (2019).
https://doi.org/10.1021/acs.jpcc.8b11835
F.Y. Lee, K.Y. Yang, C.H. Li, T.R. Lee, T.C. Lee. Electrochemical properties of an AgInS2 photoanode prepared using ultrasonic-assisted chemical bath deposition. RSC Adv. 4, 35215 (2014).
https://doi.org/10.1039/C4RA01728E
B. Cichy, R.M. Rich, A. Olejniczak, Z. Gryczynski, W. Strek. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy. Nanoscale 8, 4151 (2016).
https://doi.org/10.1039/C5NR07992F
A. Hirase, Y. Hamanaka, T. Kuzuya. Ligand-induced luminescence transformation in AgInS2 nanoparticles: From defect emission to band-edge emission. J. Phys. Chem. Lett. 11, 3969 (2020).
https://doi.org/10.1021/acs.jpclett.0c01197
V. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, D.R.T. Zahn. Phonon Raman spectroscopy of nanocrystalline multinary chalcogenides as a probe of complex lattice structures. J. Phys.: Condens. Matter 35, 103001 (2023).
https://doi.org/10.1088/1361-648X/acaa18
Y.M. Azhniuk, A.V. Gomonnai, D. Solonenko, V. Loya, I. Voynarovych, B. Lopushanska, I. Roman, V. Lopushansky, D.R.T. Zahn. Raman and X-ray diffraction study of Ag-In-S polycrystals, films, and nanoparticles. J. Mater. Res. 38, 2239 (2023).
https://doi.org/10.1557/s43578-023-00960-8
F. W. Ohrendorf, H. Haeuseler. Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies. Cryst. Res. Technol. 34, 339 (1999).
https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<339::AID-CRAT339>3.0.CO;2-E
I.H. Choi, S.H. Eom, P.Y. Yu. The optical and vibrational properties of the quaternary chalcopyrite semiconductor alloy AgxCu1−xGaS2. J. Appl. Phys. 87, 3815 (2000).
https://doi.org/10.1063/1.372419
Y.M. Azhniuk, Y.I. Hutych, V.V. Lopushansky, M.V. Prymak, A.V. Gomonnai, D.R.T. Zahn. Chemical composition of matrix-embedded ternary II-VI nanocrystals derived from first- and second-order Raman spectra. J. Phys. Chem. Solids 99, 66 (2016).
https://doi.org/10.1016/j.jpcs.2016.08.012
V.M. Dzhagan, Y.M. Azhniuk, A.G. Milekhin, D.R.T. Zahn. Vibrational spectroscopy of compound semiconductor nanocrystals. J. Phys. D 51, 503001 (2018).
https://doi.org/10.1088/1361-6463/aada5c
M.Ya. Valakh, V.M. Dzhagan, A.E. Raevskaya, S.Ya. Kuchmiy. Optical investigations of ultra-small colloidal nanoparticles and heteronanoparticles based on II-VI semiconductors. Ukr. J. Phys. 56, 1080 (2011).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.