On Zero-Temperature Current through Atomic Chain Subjected to a Uniformly Varying Field: Green's Function Formalism

Authors

  • L.I. Malysheva Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe69.8.611

Keywords:

electron transport, Green’s functions, transmission coefficient

Abstract

On the basis of the tight-binding formalism and Green’s function technique, we obtain all matrix elements of Green’s functions for a biased chain with linear variations of the electron on-site energy. Their dependence on system parameters is analyzed in the context of through-molecule electron transport.

References

V. Mujica, M. Kemp, M. A. Ratner. Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys. 101, 6849 (1994).

https://doi.org/10.1063/1.468314

S. Datta. Electronic Transport In Mesoscopic Systems (Cambridge University Press, 1995) [ISBN: 0521599431].

https://doi.org/10.1017/CBO9780511805776

A. Onipko, Yu. Klymenko, L. Malysheva. Conductance of molecular wires: Analytical modeling of connection to leads. Phys. Rev. B 62, 10480 (2000).

https://doi.org/10.1103/PhysRevB.62.10480

A. Nitzan. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681 (2001).

https://doi.org/10.1146/annurev.physchem.52.1.681

V. Mujica, A. Nitzan, S. Datta, M.A. Ratner, C.P. Kubiak. Molecular wire junctions: Tuning the conductance. J. Phys. Chem. B 107, 91 (2003).

https://doi.org/10.1021/jp0216427

S. Datta. Quantum Transport: Atom to Transistor (Cambridge University Press, 2005) [ISBN: 0511643748].

https://doi.org/10.1017/CBO9781139164313

A. Onipko, L. Malysheva. Coherent electron transport in molecular contacts: A case of tractable modeling. In: Handbook on Nano- and Molecular Electronics, Chapter 23 (CRC Press, 2007) [ISBN: 978-0-8493-8528-5].

https://doi.org/10.1201/9781315221670-23

A. Landau, L. Kronik, A. Nitzan. Cooperative effects in molecular conduction. J. Comp. Theor. Nanoscience 5, 535 (2008).

https://doi.org/10.1166/jctn.2008.2496

E.G. Petrov. Modified superexchange model for electron tunneling across the terminated molecular wire. Phys. Status Solidi B 256, 1900092 (2019).

https://doi.org/10.1002/pssb.201900092

E.G. Petrov, Ye.V. Shevchenko, V. Snitsarev, V.V. Gorbach, A.V. Ragulya, S. Lyubchik. Features of superexchange nonresonant tunneling conductance in anchored molecular wires. AIP Advances 9, 115120 (2019).

https://doi.org/10.1063/1.5124386

G.H. Wannier. Elements of Solid State Theory (The University Press, 1960).

https://doi.org/10.1063/1.3056924

G.H. Wannier. Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys. Rev. 117, 432 (1960).

https://doi.org/10.1103/PhysRev.117.432

G.C. Stey, G. Gusman. Wannier-Stark ladders and the energy spectrum of an electron in a finite one dimensional crystal. J. Phys. C: Solid State Phys. 6, 650 (1973).

https://doi.org/10.1088/0022-3719/6/4/012

H. Fukuyama, R.A. Bari, H.C. Fogedby. Tightly bound electrons in a uniform electric field. Phys. Rev. B 8, 5579 (1973).

https://doi.org/10.1103/PhysRevB.8.5579

V.M. Yakovenko, H.-S. Goan. Edge and bulk electron states in a quasi-one-dimensional metal in a magnetic field: The semi-infinite Wannier-Stark ladder. Phys. Rev. B 58, 8002 (1998).

https://doi.org/10.1103/PhysRevB.58.8002

Yu.B. Gaididei, A.A. Vakhnenko. Nonequilibrium kinetics of exciton wave packets in crystals. Phys. Status Solidi B 121, 239 (1984).

https://doi.org/10.1515/9783112497104-030

S.G. Davison, R.A. English, A.L. Mi˘skovi'c, F.O. Goodman, A.T. Amos, B.L. Burrows. Recursive Green-function study of Wannier-Stark effect in tight-binding systems. J. Phys.: Condens. Matter. 9, 6371 (1997).

https://doi.org/10.1088/0953-8984/9/30/006

A. Onipko, L. Malysheva. Triple-, double-, and fractionally-spaced Wannier-Stark ladders. Solid State Commun. 118, 63 (2001).

https://doi.org/10.1016/S0038-1098(01)00043-6

A. Onipko, L. Malysheva. Noncanonical Wannier-Stark ladders and surface state quantization in finite crystals subjected to a homogeneous electric field. Phys. Rev. B 63, 235410 (2001).

https://doi.org/10.1103/PhysRevB.63.235410

A. Onipko, L. Malysheva. Signatures of Wannier-Stark and surface states in electron tunneling and related phenomena: Electron transmission through a tilted band. Phys. Rev. B 64, 195131 (2001).

https://doi.org/10.1103/PhysRevB.64.195131

A. Onipko, L. Malysheva. Analytic theory of WannierStark quantization in arbitrary-size atomic square lattices. Phys. Status Solidi B 1700558 (2018).

https://doi.org/10.1002/pssb.201700558

L.I. Malysheva. Green function for a chain of interacting levels in the uniformly varying field. Ukr. Fiz. Zh. 45, 1475 (2000).

R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957).

https://doi.org/10.1147/rd.13.0223

M. B¨uttiker, Y. Imry, R. Landauer, S. Pinhas. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985).

https://doi.org/10.1103/PhysRevB.31.6207

Y. Imry. Introduction to Mesoscopic Physics (Oxford University Press, 2002) [ISBN: 0-19-8507380].

https://doi.org/10.1093/oso/9780198507383.001.0001

C. Caroli, R. Combescot, P. Nozi'eres, D. Saint-James. Direct calculation of the tunneling current. J. Phys. C 4, 916 (1971).

https://doi.org/10.1088/0022-3719/4/8/018

S. F¨olsh, P. Hyldgaard, R. Koch, K.H. Ploog. Quantum confinement in monatomic Cu chains on Cu(111). Phys. Rev. Lett. 92, 056803 (2004).

https://doi.org/10.1103/PhysRevLett.92.056803

J.N. Crain, D.T. Pierce. End states in one-dimensional atom chains. Science 307, 703 (2005).

https://doi.org/10.1126/science.1106911

Published

2024-09-18

How to Cite

Malysheva, L. (2024). On Zero-Temperature Current through Atomic Chain Subjected to a Uniformly Varying Field: Green’s Function Formalism. Ukrainian Journal of Physics, 69(8), 611. https://doi.org/10.15407/ujpe69.8.611

Issue

Section

Surface physics