The Sol-Gel Transition in Hydrogels as the First-Order Phase Transition

Authors

DOI:

https://doi.org/10.15407/ujpe69.6.409

Keywords:

sol-gel transition, hydrogel, first-order phase transition, percolation

Abstract

Thermodynamic features of the sol-gel transition have been considered. It is found that the sol-gel transition in hydrogels is the first-order phase transition. Using the classical theory of phase transformations, the kinetics of sol-gel transition in various regimes is analyzed. It is shown that, under certain conditions, the sol-gel transition can acquire features characteristic of the percolation transition.

References

Handbook of Biopolymers. Edited by T. Sabu, A.R. Ajitha, J.C. Cintil, T. Bejoy (Springer Nature Singapore Pte Ltd., 2023) [ISBN: 978-9811907098].

H. Kal'asz, M. B'athori, K.L. Valk'o. Basis and pharmaceutical applications of thin-layer chromatography. Handb. Anal. Sep. 8, 523 (2020).

https://doi.org/10.1016/B978-0-444-64070-3.00010-2

D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, H. Xiao. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. J. Bioresour. Bioprod. 5, 1 (2020).

https://doi.org/10.1016/j.jobab.2020.03.001

M. Lazarenko, A. Alekseev, Yu. Zabashta, S. Tkachev, V. Kovalchuk, D. Andrusenko, Yu. Grabovsky, L. Bulavin. Estimation of water content in cellulose materials. Cellul. Chem. Technol. 54, 199 (2020).

B. Lindman, G. Karlstr¨om, L. Stigsson. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76 (2010).

https://doi.org/10.1016/j.molliq.2010.04.016

T. Heinze, O.A. El Seoud, A. Koschella. Cellulose Derivatives: Synthesis, Structure, and Properties (Springer Cham, 2018) [ISBN: 978-3319731674].

https://doi.org/10.1007/978-3-319-73168-1

K. Kamide. Cellulose and Cellulose Derivatives: Molecular Characterization and Its Applications (Elsevier Science, 2005) [ISBN: 978-0080454443].

S.M.F. Kabir, P.P. Sikdar, B. Haque, M.A.R. Bhuiyan, A. Ali, M.N. Islam. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7, 153 (2018).

https://doi.org/10.1007/s40204-018-0095-0

M. Karg, A. Pich, T. Hellweg, T. Hoare, L.A. Lyon, J.J. Crassous, D. Suzuki, R.A. Gumerov, S. Schneider, I.I. Potemkin, W. Richtering. Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir 35, 6231 (2019).

https://doi.org/10.1021/acs.langmuir.8b04304

E. Cal'o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2014).

https://doi.org/10.1016/j.eurpolymj.2014.11.024

V.F. Korolovych, O.A. Grishina, O.A. Inozemtseva, A.V. Selifonov, D.N. Bratashov, S.G. Suchkov, L.A. Bulavin, O.E. Glukhova, G.B. Sukhorukov, D.A. Gorin. Impact of high-frequency ultrasound on nanocomposite microcapsules: In silico and in situ visualization. Phys. Chem. Chem. Phys. 18, 2389 (2015).

https://doi.org/10.1039/C5CP05465F

P.-G. Gennes. Scaling Concepts in Polymer Physics (Cornell University Press, 1979) [ISBN: 978-0801412035].

S. Kirkpatrick. Percolation and Conduction. Rev. Mod. Phys. 45, 574 (1973).

https://doi.org/10.1103/RevModPhys.45.574

M. Tokita. Gelation mechanism and percolation. Food Hydrocoll. 3, 263 (1989).

https://doi.org/10.1016/S0268-005X(89)80038-4

D. Stauffer, A. Aharony. Introduction To Percolation Theory, 2nd edition (Taylor and Francis, 1992).

N.I. Lebovka, L.A. Bulavin, I.A. Melnyk, K.F. Repnin, V.I. Kovalchuk. Impact of aggregation on the percolation anisotropy on a square lattice in an elongated geometry. Ukr. J. Phys. 60, 910 (2015).

https://doi.org/10.15407/ujpe60.09.0910

N. Lebovka, L. Bulavin, V. Kovalchuk, I. Melnyk, K. Repnin. Two-step percolation in aggregating systems. Cond. Matter Phys. 20, 13602 (2017).

https://doi.org/10.5488/CMP.20.13602

N.I. Lebovka, Yu.Yu. Tarasevich, L.A. Bulavin, V.I. Kovalchuk, N.V. Vygornitskii. Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous twodimensional problem. Phys. Rev. E 99, 052135 (2019).

https://doi.org/10.1103/PhysRevE.99.052135

J.M. Ziman. Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, 1979).

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

J. Frenkel. Kinetic Theory of Liquids (Dover Publications, 1955).

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, M.M. Lazarenko, O.M. Alekseev, A.V. Brytan, L.Yu. Vergun, L.A. Bulavin. Clusterization in solutions as a process of mesophase formation. J. Phys. Stud. 28, 1602 (2024).

https://doi.org/10.30970/jps.28.1602

B.H. Lavenda. Thermodynamics of Irreversible Processes (Dover Publications, 1993) [ISBN: 978-0486675763].

S.R. De Groot, P. Mazur. Non-Equilibrium Thermodynamics (Dover Publications, 2011) [ISBN: 978-0486647418].

J.M. Ziman. Principles of the Theory of Solids (Cambridge University Press, 1972) [ISBN: 978-0521297332].

https://doi.org/10.1017/CBO9781139644075

E.M. Lifshits, L.P. Pitaevskii. Physical Kinetics (Butterworth-Heinemann, 1981) [ISBN: 978-0750626354].

L.A. Bulavin, Yu.F. Zabashta. Local Maxwellian distribution in fluids. Ukr. J. Phys. 57, 1156 (2012).

L. D. Landau, E. M. Lifshitz, Statistical Physics: Course of Theoretical Physics, Vol. 5 (Butterworth-Heinemann, 1980).

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Determination of the surface tension coefficient of polymer gel. Ukr. J. Phys. 67, 365 (2022).

https://doi.org/10.15407/ujpe67.5.365

T. Okuzono, N. Aoki, T. Kajiya, M. Doi. Effects of gelation on the evaporation rate of polymer solutions. J. Phys. Soc. Jpn. 79, 094801 (2010).

https://doi.org/10.1143/JPSJ.79.094801

Published

2024-07-25

How to Cite

Zabashta, Y., Kovalchuk, V., Svechnikova, O., Vergun, L., & Bulavin, L. (2024). The Sol-Gel Transition in Hydrogels as the First-Order Phase Transition. Ukrainian Journal of Physics, 69(6), 409. https://doi.org/10.15407/ujpe69.6.409

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

<< < 1 2 3 4 5