Detection of Structural Features of Objects Using X-ray Phase Contrast Imaging Method


  • A. Ovcharenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • O. Lebed Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine



X-ray phase contrast imaging, wave front, X-ray diffraction, coherence, Fresnel-Kirchhoff diffraction theory


Phase contrast is widely used everywhere, where the visualization of the internal structure of objects using X-rays is required. In this paper, a new approach based on the Fresnel–Kirchhoff theory has been proposed to model the X-ray phase-contrast image making use of the freepropagation method. A simple calculation model has been developed that allows the intensity variation on three-dimensional models of macroscopic objects with arbitrary shapes and, accordingly, the observation conditions for obtaining a contrast image in the case of known detector system characteristics and X-ray source intensity to be determined. The possibility of obtaining the clear images of objects with low refractive indices and determining their geometric dimensions and thickness is shown. The approaches described in this paper can be useful for developers of compact devices aimed at detecting structural inhomogeneities inside the studied objects with the help of non-destructive methods.


M.Endrizzi. X-ray phase-contrast imaging. Nucl. Instrum. Methods A 878, 88 (2018).

Y.S. Kashyap, P.S. Yadav, T. Roy, P.S. Sarkar, M. Shukla, A. Sinha. Laboratory-based X-ray phase-contrast imaging technique for material and medical science applications. Appl. Radiat. Isot. 66, 1083 (2008.

A. Bravin, P. Coan, P. Suortti. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys. Med. Biol. 58, R1 (2012).

T. Tuohimaa, M. Otendal, H.M. Hertz. Phase-contrast x-ray imaging with a liquid-metal-jet-anode microfocus source. Appl. Phys. Lett. 91, 074104 (2007).

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiatio. Rev. Sci. Instrum. 66, 5486 (1995).

K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, Z. Barnea. Quantitative phase imaging using hard X-rays. Phys. Rev. Lett. 77, 2961 (1996).

R.A. Lewis. Medical phase contrast x-ray imaging: Current status and future prospects. Phys. Med. Biol. 49, 3573 (2004).

F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L.D. Palma, M.D. Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky et al. Low-dose phase contrast X-ray medical imaging. Phys. Med. Biol. 43, 2845 (1998).

S. Tao, C. He, X. Hao, C. Kuang, X. Liu. Principles of different X-ray phase-contrast imaging: A Review. Appl. Sci. 11, 2971 (2021).

A. Momose. X-ray phase imaging reaching clinical uses. Phys. Medica 79, 93 (2020).

D. Gabor. A new microscopic principle. Nature 161, 777 (1948).

S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335 (1996).

A. Pogany, D. Gao, S.W. Wilkins. Contrast and resolution in imaging with a microfocus X-ray source. Rev. Sci. Instrum. 68, 2774 (1997).

A. Peterzol, A. Olivo, L. Rigon, S. Pani, D. Dreossi. The effects of the imaging system on the validity limits of the rayoptical approach to phase contrast imaging. Med. Phys. 32, 3617 (2005).

A. Burvall, U. Lundstrom, P. Takman, D. Larsson, H. Hertz. Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Opt. Express 19, 10359 (2011).

S.C. Mayo, A.W. Stevenson, S.W. Wilkins. In-line phasecontrast X-ray imaging and tomography for materials science. Materials 5, 937 (2012).

A.J. Carroll, G.A. van Riessen, E. Balaur, I.P. Dolbnya, G.N. Tran, A.G. Peele. An iterative method for nearfield Fresnel region polychromatic phase contrast imaging. J. Opt. 19, 075003 (2017).

D.Paganin. Coherent X-Ray Optics (Oxford University Press, 2013).

D.M. Paganin, D. Pelliccia. Tutorials on x-ray phase contrast imaging: Some fundamentals and some conjectures on future developments, arXiv:1902.00364.

D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33 (2002).

S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson. Phase-contrast imaging using polychromatic hard X-rays, Nature 384, 335 (1996).

D. Paganin, K.A. Nugent. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586 (1998).

P.C. Diemoz, A. Bravin, P. Coan. Theoretical comparison of three X-ray phase-contrast imaging techniques: Propagation-based imaging, analyzer-based imaging and grating interferometry. Opt. Express 20, 2789 (2012).

A. Olivo, E. Castelli. X-ray phase contrast imaging: From synchrotrons to conventional sources, Riv. Nuovo Cimento 37, 467 (2014).

O.M. Buhay, A.A. Drozdenko, M.I. Zakharets, I.G. Ignat'ev, A.B. Kramchenkov, V.I. Miroshnichenko, A.G. Ponomarev, V.E. Storizhko. Current status of the IAP NASU accelerator-based analytical facility. Phys. Procedia 66, 166 (2015).

K. Dupraz et al. The ThomX ICS source. Physics Open 5, 100051 (2020).



How to Cite

Ovcharenko, A., & Lebed, O. (2024). Detection of Structural Features of Objects Using X-ray Phase Contrast Imaging Method. Ukrainian Journal of Physics, 69(5), 293.



Optics, atoms and molecules