Kinetics of Laser-Induced Thermal Emission of Porous Carbon Materials: Dependence on Laser Wavelength

Authors

  • S.E. Zelensky Taras Shevchenko National University of Kyiv
  • O.S. Kolesnik Taras Shevchenko National University of Kyiv
  • V.P. Yashchuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.3.143

Keywords:

laser-induced thermal emission, kinetics, porous carbon

Abstract

For the porous carbon material excited by the first and second harmonics of a neodymium laser, the shape of pulsed signals of laser-induced thermal emission is investigated. It is found that the duration of thermal emission pulses significantly depends on the wavelength of the laser excitation, which is caused by the differences in the depth of penetration of laser radiation into the surface layer. The mentioned effect is actual, if the penetration depth of laser radiation exceeds the length of thermal diffusion in the studied material for a time of the order of the laser pulse duration. The computer modeling is carried out for the processes of pulsed laser heating and formation of thermal emission signal. The simulation results showed satisfactory agreement with the measurement results.

References

L.T. Lin, D.D. Archibald, D.E. Honigs. Preliminary studies of laser-induced thermal emission spectroscopy of condensed phases. Appl. Spectrosc. 42, 477 (1988).

https://doi.org/10.1366/0003702884427852

S. Chen, C.P. Grigoropoulos. Noncontact nanosecondtime-resolution temperature measurement in excimer laser heating of Ni-P disk substrates. Appl. Phys. Lett. 71, 3191 (1997).

https://doi.org/10.1063/1.120286

D. Wasserman. Nanosecond modulation of thermal emission. Light: Sci. Appl. 8, 68 (2019).

https://doi.org/10.1038/s41377-019-0179-1

N. Moteki, N. Takegawa, K. Koizumi, T. Nakamura, Y. Kondo. Multiangle polarimetry of thermal emission and light scattering by individual particles in airflow. Aerosol Science and Technology 45, 1184 (2011).

https://doi.org/10.1080/02786826.2011.583299

Z.H. Lim, A. Lee, Y. Zhu, K.-Y. Lim, C.-H. Sow. Sustained laser induced incandescence in carbon nanotubes for rapid localized heating. Appl. Phys. Lett. 94, 073106 (2009).

https://doi.org/10.1063/1.3083554

G. Aprilis, C. Strohm, I. Kupenko, S. Linhardt, A. Laskin et al. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications. Rev. Sci. Instr. 88, 084501 (2017).

https://doi.org/10.1063/1.4998985

Y. Zhang, P. Sun, L. Liu, D.-X. Wang, S.-Y. Chen et al. Effects of Li ions on the thermal radiation induced by NIR laser in rare earth doped oxide. Spectroscopy and Spectral Analysis 38, 2725 (2018).

J. Deng, Z. Du, L.R. Benedetti, K.K.M. Lee. The influence of wavelength-dependent absorption and temperature gradients on temperature determination in laser-heated diamond-anvil cells. J. Appl. Phys. 121, 025901 (2017).

https://doi.org/10.1063/1.4973344

L. Landstrom, K. Elihn, M. Boman, C.G. Granqvist. Analysis of thermal radiation from laser-heated nanoparticles formed by laser-induced decomposition of ferrocene. Appl. Phys. A 81, 827 (2005).

https://doi.org/10.1007/s00339-005-3284-3

H.A. Michelsen. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012 (2003).

https://doi.org/10.1063/1.1559483

S.E. Zelensky, T. Aoki. Decay kinetics of thermal radiation emitted by surface layers of carbon materials under pulsed laser excitation. Optics and Spectroscopy 127, 931 (2019).

https://doi.org/10.1134/S0030400X19110298

V. Karpovych, O. Tkach, K. Zelenska, S. Zelensky, T. Aoki. Laser-induced thermal emission of rough carbon surfaces. J. Laser Appl. 32, 012010 (2020).

https://doi.org/10.2351/1.5131189

K. Zelenska, S. Zelensky, A. Kopyshinsky, S. Rozouvan, T. Aoki. Laser-induced incandescence of rough carbon surfaces. Jpn J. Appl. Phys. Conf. Proc. 4, 011106 (2016).

https://doi.org/10.56646/jjapcp.4.0_011106

S.E. Zelensky, O.S. Kolesnik, V.P. Yashchuk. The role of air in laser-induced thermal emission of surface layers of porous carbon materials. Ukr. J. Phys. 68, 652 (2023).

https://doi.org/10.15407/ujpe68.10.652

K.S. Zelenska, S.E. Zelensky, O.S. Kolesnik, T. Aoki, P.O. Teselko. Laser-induced thermal emission of carbon microparticles on transparent heat-sink substrates. Semiconductor Physics, Quantum Electronics & Optoelectronics 26, 201 (2023).

https://doi.org/10.2139/ssrn.4042483

S.E. Zelensky, A.S. Kolesnik, A.V. Kopyshinsky, V.V. Garashchenko, K.S. Zelenska, V.M. Stadnytskyi, E.V. Shinkarenko. Thermal emission of carbon microparticles in polymer matrices under pulsed laser excitation. Ukr. J. Phys. 54, 983 (2009).

M. Kokhan, I. Koleshnia, S. Zelensky, Y. Hayakawa, T. Aoki. Laser-induced incandescence of GaSb/InGaSb surface layers. Optics and Laser Technology 108, 150 (2018).

https://doi.org/10.1016/j.optlastec.2018.06.053

V. Karpovych, K. Zelenska, S. Yablochkov, S. Zelensky, T. Aoki. Evolution of laser-induced incandescence of porous carbon materials under irradiation by a sequence of laser pulses. Thai J. Nanosci. Nanotechnol. 2 (2), 14 (2017).

A. Savvatimskiy. Resistivity and heat capacity for solid graphite up to 3000 K. In: Carbon at High Temperatures. Springer Series in Materials Science, 134 (Springer, 2015).

https://doi.org/10.1007/978-3-319-21350-7_2

C.Y. Ho, R.W. Powell, P.E. Liley. Thermal conductivity of the elements: A comprehensive review. J. Phys. Chem. Reference Data 3, Suppl. No. 1 (1974).

M.N. Polyanskiy. Refractive index database. https:// refractiveindex.info.

Published

2024-04-17

How to Cite

Zelensky, S., Kolesnik, O., & Yashchuk, V. (2024). Kinetics of Laser-Induced Thermal Emission of Porous Carbon Materials: Dependence on Laser Wavelength. Ukrainian Journal of Physics, 69(3), 143. https://doi.org/10.15407/ujpe69.3.143

Issue

Section

Optics, atoms and molecules