Phase Diagrams of Water Isotopologues and Noble Substances
DOI:
https://doi.org/10.15407/ujpe69.3.179Keywords:
water isotopologues, superheavy water, noble substances, radon, chemical potential, phase diagrams, Kirchhoff equation, Massier functions, triple pointAbstract
Phase diagrams calculated using the literature data for water isotopologues and noble substances have been presented. The principle of corresponding states when caloric variables are applied was verified. It was shown that in the reduced temperature, pressure, and chemical potential coordinates, the water isotopologues form a group of substances and have similar phase diagrams. On the other hand, inert substances, starting from argon, form another group with similar phase diagrams in the same coordinates. At the same time, helium and neon, for which the de Boer quantum parameter is substantial, have phase diagrams different from those for other noble substances. Phase diagrams of tritiated water, T2O, and radon, Rn, have been predicted.
References
A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008).
https://doi.org/10.1016/j.cplett.2007.11.036
I.V. Zhyganiuk, M.P. Malomuzh. Physical nature of hydrogen bond. Ukr. J. Phys. 60, 960 (2015).
https://doi.org/10.15407/ujpe60.09.0960
L.A. Bulavin, V.Ya. Gotsulskyi, N.P. Malomuzh, A.I. Fisenko. Crucial role of water in the formation of basic properties of living matter. Ukr. J. Phys. 65, 794 (2020).
https://doi.org/10.15407/ujpe65.9.794
L.A. Bulavin, Ye.G. Rudnikov. Temperature and pressure effect on the thermodynamics coefficient (dV/dT)P of water. Ukr. J. Phys. 68, 122 (2023).
https://doi.org/10.15407/ujpe68.6.390
L.A. Bulavin, Ye. G.Rudnikov. The influence of the temperature and chemical potential on the thermodynamic coefficient −(dV/dT)T of water. Ukr. J. Phys. 68, 390 (2023).
https://doi.org/10.15407/ujpe68.6.390
L.A. Bulavin, Ye.G. Rudnikov, A.V. Chalyi. Thermodynamic anomalies of water near its singular temperature of 42∘C. J. Mol. Liq. 389, 122849 (2023).
https://doi.org/10.1016/j.molliq.2023.122849
G.M. Kontogeorgis, A. Holster, N. Kottaki, E. Tsochantaris, F. Topsøe, J. Poulsen, M. Bache, X. Liang, N.S. Blom, J. Kronholm. Water structure, properties and some applications. A review. Chem. Thermodyn. Thermal Anal. 6, 100053 (2022).
https://doi.org/10.1016/j.ctta.2022.100053
H. Tanaka. Roles of liquid structural ordering in glass transition, crystallization, and water's anomalies. J. NonCryst. Solids X 13, 100076 (2022).
https://doi.org/10.1016/j.nocx.2021.100076
M.F. Chaplin. Structure and properties of water in its various states. In: Encyclopedia of Water: Science, Technology, and Society. Edited by P.A. Maurice (Wiley, 2019).
https://doi.org/10.1002/9781119300762.wsts0002
V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko, L.G.M. Pettersson. From clusters to condensed phase - FT IR studies of water. J. Mol. Liq. 235, 7 (2017).
https://doi.org/10.1016/j.molliq.2016.12.037
G. Pitsevich, I. Doroshenko, A. Malevich, E. Shalamberidze, V. Sapeshko, V. Pogorelov, L.G.M. Pettersson. Temperature dependence of the intensity of the vibrationrotational absorption band v2 of H2O trapped in an argon matrix. Spectrochim. Acta A 172, 83 (2017).
https://doi.org/10.1016/j.saa.2016.04.028
O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, O.I. Ivankov, A.Y. Vul', A.T. Dideikin, M.V. Avdeev. Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Crystallogr. 47, 642 (2014).
https://doi.org/10.1107/S1600576714001216
E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Almasy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, P. Bl'aha, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Investig. X-ray Synchr. Neutr. Techn. 9, 1 (2015).
https://doi.org/10.1134/S1027451015010127
V.I. Petrenko, O.P. Artykulnyi, L.A. Bulavin, L. Alm'asy, V.M. Garamus, O.I. Ivankov, N.A. Grigoryeva, L. Vekas, P. Kopcansky, M.V. Avdeev. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloid. Surface. A 541, 222 (2018).
https://doi.org/10.1016/j.colsurfa.2017.03.054
J.H.S. Lee, K. Ramamurthi. Fundamentals of Thermodynamics (CRC Press, 2022).
V.V. Sychev. The Differential Equations Of Thermodynamics (CRC Press, 1991).
C. Yaws. Thermophysical Properties of Chemicals and Hydrocarbons. 2nd edition (Gulf Professional Publishing, 2014).
M.Z. Southard, D.W. Green. Perry's Chemical Engineers' Handbook (Mcgraw-Hill Education, 2019).
M.F. Chaplin. Water Structure and Science; https:// water.lsbu.ac.uk/water/water_structure_science.html.
Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, SRD 69 ; https://webbook.nist.gov/ chemistry/fluid.
MiniRefprop Database, NIST; https://trc.nist.gov/ refprop/MINIREF/MINIREF.HTM.
I.H. Bell, S. Wronski, V. Quoilin. Lemort pure and pseudopure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53, 2498 (2014).
https://doi.org/10.1021/ie4033999
Refprop Database, NIST ; https://www.nist.gov/programs-projects/reference-fluidthermodynamic-and-transport-properties-database-refprop.
ThermodataEngine Database, NIST ; https://trc.nist.gov/tde.html.
WTT Database, NIST; https://wtt-pro.nist.gov/wtt-pro/.
MOL-Instincts Database, ChemEssen; https://www.molinstincts.com/.
ChemRTP Database, ChemEssen; http://www.chemrtp.com/.
Phase Diagrams: Understanding the Basics. Edited by F.C. Campbell (ASM International, 2012).
B. Cantor. The Equations of Materials (Oxford University Press, 2020).
https://doi.org/10.1093/oso/9780198851875.001.0001
M.A. Anisimov. Critical Phenomena in Liquids and Liquid Crystals (CRC Press, 1991).
A. Oleinikova, L. Bulavin, V. Pipich. The viscosity anomaly near the lower critical consolute point. Int. J. Thermophys. 20, 889 (1999).
https://doi.org/10.1023/A:1022639304064
JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data 11, 695 (1982).
https://doi.org/10.1063/1.555666
LV. Gurvich, I.V. Veits, C.B. Alcock. Thermodynamics Properties of Individual Substances. 4th edition (RAS, 1989) [ISBN: 0-8493-9926-2].
W. Wagner, T. Riethmann, R. Feistel, A.H. Harvey. New equations for the sublimation pressure and melting pressure of H2O Ice Ih. J. Phys. Chem. Ref. Data 40, 043103, (2011).
https://doi.org/10.1063/1.3657937
S. Herrig, M. Thol, A.H. Harvey, E.W. Lemmon. A reference equation of state for heavy water. J. Phys. Chem. Ref. Data 47, 043102 (2018).
https://doi.org/10.1063/1.5053993
F.A. Deeney, J.P. O'Leary. Zero point energy and the origin of the density maximum in water. Phys. Lett. A 372, 1551 (2007).
https://doi.org/10.1016/j.physleta.2007.10.031
G. Boato, G. Casanova. A self-consistent set of molecular parameters for neon, argon, krypton and xenon. Physica 27, 571 (1961).
https://doi.org/10.1016/0031-8914(61)90072-6
D. Santamaria-Perez, G.D. Mukherjee, B. Schwager, R. Boehler. High-pressure melting curve of helium and neon: Deviations from corresponding states theory. Phys. Rev. B 81, 214101 (2010).
https://doi.org/10.1103/PhysRevB.81.214101
W.E. Keller. Helium-3 and Helium-4 (Springer Science + Business Media, 1969).
https://doi.org/10.1007/978-1-4899-6485-4
The McGraw-Hill Dictionary of Scientific and Technical Terms. 7th edition (McGraw-Hill, 2016).
J. Wisniak. Historical development of the vapor pressure equation from Dalton to Antoine. J. Phase Equil. 22, 622 (2001).
https://doi.org/10.1007/s11669-001-0026-x
A.M.A. Dias, J.C. Pamies, L.F. Vega, J.A.P. Coutinho, I.M. Marrucho. Modelling the solubility of gases in saturated and substituted perfluoroalkanes. Polish J. Chem. 80, 143 (2006).
N. Matsunaga, A. Nagashima. Prediction of the critical constants and the saturation vapor pressure of tritium oxide. Ind. Eng. Chem. Fund. 25, 115 (1986).
https://doi.org/10.1021/i100021a017
H.W. Xiang. Vapor pressure and critical point of tritium oxide. J. Phys. Chem. Ref. Data 32, 1707 (2003).
https://doi.org/10.1063/1.1565352
N.H. Fletcher. The Chemical Physics of Ice (Cambridge University Press, 1970).
https://doi.org/10.1017/CBO9780511735639
P.W. Bridgman. Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 439 (1912).
https://doi.org/10.2307/20022754
W. Wagner, A. Pruss. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387 (2002).
https://doi.org/10.1063/1.1461829
G.S. Kell. Effect of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water. J. Phys. Chem. Ref. Data 6, 1109 (1977).
https://doi.org/10.1063/1.555561
J. Horita, D.R. Cole. Stable isotope partitioning in aqueous and hydrothermal systems to elevated temperatures. In: Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions. Edited by D.A. Palmer, R. Fern'andez-Prini, A.H. Harvey (Elsevier, 2004).
https://doi.org/10.1016/B978-012544461-3/50010-7
D.R. White, W.L. Tew. Improved estimates of the isotopic correction constants for the triple point of water. Int. J. Thermophys. 31, 1644 (2010).
https://doi.org/10.1007/s10765-010-0819-4
F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H.E. Stanley. Thermodynamic properties of bulk and confined water. J. Chem. Phys. 141, 18C504 (2014).
https://doi.org/10.1063/1.4895548
A. Khan, M. Rezwan Khan, M. Ferdouse Khan, F. Khanam. A liquid water model: Explaining the anomalous density variation of liquid D2O and shifting of density maximum under pressure. J. Mol. Struct. (Theochem) 679, 165 (2004).
https://doi.org/10.1016/j.theochem.2004.04.017
P. Gallo, K. Amann-Winkel, Ch.A. Angell, M.A. Anisimov, F. Caupin, Ch. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson. Water: A tale of two liquids. Chem. Rev. 116, 7463 (2016).
https://doi.org/10.1021/acs.chemrev.5b00750
J. Russo, H. Tanaka. Understanding water's anomalies with locally favoured structures. Nat. Commun. 5, 3556 (2014).
https://doi.org/10.1038/ncomms4556
A. Nilsson, L.G.M. Pettersson. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).
https://doi.org/10.1038/ncomms9998
R. Shi, H. Tanaka. Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. J. Am. Chem. Soc. 142, 2868 (2020).
https://doi.org/10.1021/jacs.9b11211
A. Kholmanskiy, N. Zaytseva. Physically adequate approximations for abnormal temperature dependences of water characteristics. J. Mol. Liq. 275, 741 (2019).
https://doi.org/10.1016/j.molliq.2018.11.059
A. Kholmanskiy. Hydrogen bonds and dynamics of liquid water and alcohols, J. Mol. Liq. 325, 115237 (2021).
https://doi.org/10.1016/j.molliq.2020.115237
A. Stepanov. Thermodynamics of substances with negative thermal expansion and negative compressibility. J. NonCryst. Solids 356, 1168 (2010).
https://doi.org/10.1016/j.jnoncrysol.2010.03.013
O. Khorolskyi, N.P. Malomuzh. pH and H-bonding energy for pure water. Chem. Phys. Lett. 828, 140713 (2023).
https://doi.org/10.1016/j.cplett.2023.140713
O. Khorolskyi, A. Kryvoruchko. Non-trivial behavior of the acid-base balance of pure water near the temperature of its dynamic phase transition. Ukr. J. Phys. 66, 972 (2021).
https://doi.org/10.15407/ujpe66.11.972
A.I. Fisenko, O.V. Khorolskyi, N.P. Malomuzh, A.A. Guslisty. Relationship between the major parameters of warmblooded organisms' life activity and the properties of aqueous salt solutions. AIMS Biophysics 10, 372 (2023).
https://doi.org/10.3934/biophy.2023022
M.M. Lazarenko, O.M. Alekseev, S.G. Nedilko, A.O. Sobchuk, V.I. Kovalchuk, S.V. Gryn, V.P. Scherbatskyi, S.Yu. Tkachev, D.A. Andrusenko, E.G. Rudnikov, A.V. Brytan, K.S. Yablochkova, E.A. Lysenkov, R.V. Dinzhos, S. Thomas, T.R. Abraham. Impact of the alkali metals ions on the dielectric relaxation and phase transitions in water solutions of the hydroxypropylcellulose. In: Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2022 (Springer, 2022).
https://doi.org/10.1007/978-3-031-42708-4_3
C. Andreani, C. Corsaro, D. Mallamace, G. Romanell, R. Senesi, F. Mallamace. The onset of the tetrabonded structure in liquid water. Sci. China Phys. Mech. Astron. 62, 107008 (2019).
https://doi.org/10.1007/s11433-018-9408-2
A.G. Lyapin, O.V. Stal'gorova, E.L. Gromnitskaya, V.V. Brazhkin. Crossover between the thermodynamic and nonequilibrium scenarios of structural transformations of H2O Ih ice during compression. J. Exper. Theor. Phys. 94, 283 (2002).
https://doi.org/10.1134/1.1458477
G.S. Kell. Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66 (1967).
https://doi.org/10.1021/je60032a018
P.G. Hill, R.D.Ch. MacMillan, V. Lee. A fundamental equation of state for heavy water. J. Phys. Chem. Ref. Data 11, 1 (1982).
https://doi.org/10.1063/1.555661
M. Goldblatt, The density of liquid T2O. J. Phys. Chem. 68, 147 (1964).
https://doi.org/10.1021/j100783a024
F. Franks. Water. A Matrix of Life. 2nd edition (Royal Society of Chemistry, 2000).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.