Canonical Ensemble vs. Grand Canonical Ensemble in the Description of Multicomponent Bosonic Systems

Authors

  • D. Anchishkin Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv,Frankfurt Institute for Advanced Studies
  • V. Gnatovskyy Taras Shevchenko National University of Kyiv
  • D. Zhuravel Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. Karpenko Taras Shevchenko National University of Kyiv
  • I. Mishustin Frankfurt Institute for Advanced Studies
  • H. Stöcker Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University

DOI:

https://doi.org/10.15407/ujpe69.1.3

Keywords:

relativistic bosonic system of particles and antiparticles, Bose–Einstein condensation

Abstract

The thermodynamics of a system of interacting bosonic particles and antiparticles in the presence of the Bose–Einstein condensate is studied in the framework of a Skyrme-like mean-field model. It is assumed that the total charge density (isospin density) is conserved at all temperatures. Two cases are explicitly considered: the zero or nonzero isospin charge of the system. A comparative analysis is carried out using the Canonical Ensemble or the Grand Canonical Ensemble. It is shown that the Grand Canonical Ensemble is not suitable for describing the bosonic systems of particles and antiparticles in the presence of a condensate, but an adequate study can be carried out within the framework of the canonical ensemble, where the chemical potential is a thermodynamic quantity that depends on the canonical free variable.

References

H.E. Haber, H.A. Weldon. Thermodynamics of an ultrarelativistic ideal Bose gas. Phys. Rev. Lett. 46, 1497 (1981).

https://doi.org/10.1103/PhysRevLett.46.1497

J. Kapusta. Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories. Phys. Rev. D 24, 426 (1981).

https://doi.org/10.1103/PhysRevD.24.426

H.E. Haber, H.A. Weldon. Finite-temperature symmetry breaking as Bose-Einstein condensation. Phys. Rev. D 25, 502 (1982).

https://doi.org/10.1103/PhysRevD.25.502

J. Bernstein, S. Dodelson. Relativistic Bose gas. Phys. Rev. Lett. 66, 683 (1991).

https://doi.org/10.1103/PhysRevLett.66.683

K. Shiokawa, B.L. Hu. Finite number and finite size effects in relativistic Bose-Einstein condensation. Phys. Rev. D 60, 105016 (1999).

https://doi.org/10.1103/PhysRevD.60.105016

L. Salasnich. Particles and anti-particles in a relativistic Bose condensate. Il Nuovo Cimento B 117, 637 (2002).

V.V. Begun, M.I. Gorenstein. Particle number fluctuations in relativistic Bose and Fermi gases. Phys. Rev. C 73, 054904 (2006).

https://doi.org/10.1103/PhysRevC.73.054904

V.V. Begun, M.I. Gorenstein. Bose-Einstein condensation in the relativistic pion gas: Thermodynamic limit and finite size effects. Phys. Rev. C 77, 064903 (2008).

https://doi.org/10.1103/PhysRevC.77.064903

G. Mark'o, U. Reinosa, Z. Sz'ep. Bose-Einstein condensation and Silver Blaze property from the two-loop Φ-derivable approximation. Phys. Rev. D 90, 25021 (2014).

https://doi.org/10.1103/PhysRevD.90.125021

Kerson Huang. Statistical Mechanics. Sec. 12.3 (John Wiley and Sons, 1987) [ISBN: 0-471-81518-7].

L.D. Landau, E.M. Lifshitz, Statistical Physics. Vol. 5 (Elsevier, 1980) [IBSN: 7-7506-3372-7].

D.V. Anchishkin. Particle finite-size effects as a meanfieldapproximation. Sov. Phys. JETP 75, 195 (1992).

D. Anchishkin, E. Suhonen. Generalization of mean-field models to account for effects of excluded volume. Nucl. Phys. A 586, 734 (1995).

https://doi.org/10.1016/0375-9474(94)00822-5

D. Anchishkin, V. Vovchenko. Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions. J. Phys. G 42, 105102 (2015).

https://doi.org/10.1088/0954-3899/42/10/105102

D. Anchishkin, I. Mishustin, H. St¨ocker. Phase transition in an interacting boson system at finite temperatures. J. Phys. G 46, 035002 (2019).

https://doi.org/10.1088/1361-6471/aafea8

D. Anchishkin, V. Gnatovskyy, D. Zhuravel, V. Karpenko. Self-interacting particle-antiparticle system of bosons. Phys. Rev. C 105, 045205 (2022).

https://doi.org/10.1103/PhysRevC.105.045205

I. Mishustin, D. Anchishkin, L. Satarov, O. Stashko, H. St¨ocker. Condensation of interacting scalar bosons at finite temperatures. Phys. Rev. C 100, 022201(R) (2019).

https://doi.org/10.1103/PhysRevC.100.022201

D. Anchishkin, V. Gnatovskyy, D. Zhuravel, V. Karpenko, I. Mishustin, H. St¨ocker. Phase transitions in the interacting relativistic boson systems. Universe 9, 411 (2023).

https://doi.org/10.3390/universe9090411

Downloads

Published

2024-02-06

How to Cite

Anchishkin, D., Gnatovskyy, V., Zhuravel, D., Karpenko, V., Mishustin, I., & Stöcker, H. (2024). Canonical Ensemble vs. Grand Canonical Ensemble in the Description of Multicomponent Bosonic Systems. Ukrainian Journal of Physics, 69(1), 3. https://doi.org/10.15407/ujpe69.1.3

Issue

Section

Fields and elementary particles

Most read articles by the same author(s)