Piezoelectric Response of α-Form Poly(L-Lactic Acid) to Mechanically Stressed State

Authors

DOI:

https://doi.org/10.15407/ujpe70.2.109

Keywords:

piezoelectric effects, polymer (L-lactic acid), compression, bending, twisting, density functional theory, first-principle calculations

Abstract

Here, the piezoelectric effects in a polymer (L-lactic acid) under a mechanical action are studied by methods of the density functional theory and first-principles pseudopotential based on own program code. The spatial distributions of the valence electron density, electronic state density, Coulomb potentials in different directions of the PLLA polymer fragment and charge states of its individual atoms are calculated. It is found that only one fragment of the polymer chain allows us to determine the nature of the charge polarization of valence electrons and ions under a mechanical deformation.

References

1. N. Sezer, M. Ko¸c. A comprehensive review on the stateof-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021).

https://doi.org/10.1016/j.nanoen.2020.105567

2. M. Smith, S. Kar-Narayan. Piezoelectric polymers: Theory, challenges and opportunities. International Materials Reviews 67, (1), 65 (2022).

https://doi.org/10.1080/09506608.2021.1915935

3. M. Ali, M.J. Bathaei, L. Beker. Biodegradable piezoelectric polymers: recent advancements in materials and applications. Adv. Healthcare Mater. 12, 2300318 (2023).

https://doi.org/10.1002/adhm.202300318

4. Ya. Yu, F. Narita. Evaluation of electromechanical properties and conversion efficiency of piezoelectric nanocomposites with Carbon-Fiber-Reinforced polymer electrodes for stress sensing and energy harvesting. Polymers 13 (18), 3184 (2021).

https://doi.org/10.3390/polym13183184

5. J. Wu, Y. Fu, G.-H. Hu, S. Wang, C. Xiong. Effect of stretching on crystalline structure, ferroelectric and piezoelectric properties of solution-cast nylon-11 films. Polymers 13, 2037 (2021).

https://doi.org/10.3390/polym13132037

6. J. Sun, H. Guo, G.N. Sch¨adli, K. Tu, S. Sch¨ar, F. Schwarze, I. Burgert. Enhanced mechanical energy conversion with selectively decayed wood. Sci. Advan. 7 (11), eabd9138 (2021).

https://doi.org/10.1126/sciadv.abd9138

7. E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller, A. Patel, I. Kim, J. Feng, L. Yue, Q. Wu, C.L. Kuo, K.W. Lo, C.T. Laurencin, H. Ilies, P.K. Purohit, T.D. Nguyen. Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. U. S. A. 115 (5), 909 (2018).

https://doi.org/10.1073/pnas.1710874115

8. J. Zhu, L. Jia, R. Huang. Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting. J. Mater. Sci. Mater. Electron. 28 (16), 12080 (2017).

https://doi.org/10.1007/s10854-017-7020-5

9. R.M. Balabai, A.G. Solomenko, T.M. Radchenko, V.A. Tatarenko. Functionalization of quasi-two-dimensional materials: Chemical and strain-induced modifications. Progr. Phys. Metals 23, 147 (2022).

https://doi.org/10.15407/ufm.23.02.147

10. R.M. Balabai, V.M. Zadorozhnii. Ab initio study of the piezoelectric effects of the 2D semiconductors of IV group monochalcogenides (GeSe, GeS). Mol. Cryst. Liq. Crystals 765, 97 (2023).

https://doi.org/10.1080/15421406.2023.2215026

Published

2025-02-22

How to Cite

Zadorozhnyi, V., Balabai, R., & Bondarenko, O. (2025). Piezoelectric Response of α-Form Poly(L-Lactic Acid) to Mechanically Stressed State. Ukrainian Journal of Physics, 70(2), 109. https://doi.org/10.15407/ujpe70.2.109

Issue

Section

Semiconductors and dielectrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 > >> 

You may also start an advanced similarity search for this article.