An Extended Analysis of 14N(17F, 18Ne)13C and 14N(7Be, 8B)13C Proton Transfer Reactions Depending on the Temperature, Density Distribution, Nuclear Potential and Nucleon-Nucleon Interactions
DOI:
https://doi.org/10.15407/ujpe69.4.232Keywords:
transfer reaction, density distribution, nuclear potential, nucleon-nucleon interactionAbstract
The angular distributions of 14N(17F, 18Ne)13C at 170 MeV and 14N(7Be, 8B)13C at 84 MeV proton-transfer reactions depending on the density distributions, temperature, nuclear potentials, and nucleon-nucleon interactions are studied. The calculations are performed by using the code FRESCO based on the distorted wave Born approximation (DWBA) method. The theoretical results of all the approaches are compared with both each other and experimental data, and the similarities and differences of the results are discussed. Additionally, new potential parameter sets for the description of the experimental data of each reaction are developed. Finally, alternative density, nuclear potential, and nucleon-nucleon interactions are proposed for the analysis of the angular distributions of the 14N(17F, 18Ne)13C and 14N(7Be, 8B)13C protontransfer reactions.
References
H.A. Bethe. Energy production in stars. Phys. Rev. 55, 103 (1939).
https://doi.org/10.1103/PhysRev.55.103
E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547 (1957).
https://doi.org/10.1103/RevModPhys.29.547
M.S. Smith, D.W. Bardayan, J.C. Blackmon, E. Browne, R.B. Firestone, G.M. Hale, R.D. Hoffman, Z. Ma, V. McLane, E.B. Norman, N. Shu, D.L. Smith, L.A. Van Wormer, S.E. Woosley, S. Wu. Recent nuclear astrophysics data activities in the U.S. AIP Conference Proceedings 529, 243 (2000).
https://doi.org/10.1063/1.1361384
P. Descouvemont. Nuclear reactions of astrophysical interest. Front. Astron. Space Sci. 7, 9 (2020).
https://doi.org/10.3389/fspas.2020.00009
H.M. Xu, C.A. Gagliardi, R.E. Tribble, A.M. Mukhamedzhanov, N.K. Timofeyuk. Overall normalization of the astrophysical factor and the nuclear vertex constant for reactions. Phys. Rev. Lett. 73, 2027 (1994).
C.A. Gagliardi, R.E. Tribble, J. Jiang, A.M. Mukhamedzhanov, L. Trache, H.M. Xu, S.J. Yennello, X.G. Zhou. Determining S17(0) from the 10B(7Be, 8B)9Be reaction. Nucl. Phys. A 588, c327 (1995).
https://doi.org/10.1016/0375-9474(95)00157-V
J.G. Ross, J. G¨orres, C. Iliadis, S. Vouzoukas, M. Wiescher, R.B. Vogelaar, S. Utku, N.P.T. Bateman, P.D. Parker. Indirect study of low-energy resonances in 31P(p,α)28Si and 35Cl(p,α)32S. Phys. Rev. C 52, 1681 (1995).
https://doi.org/10.1103/PhysRevC.52.1681
L. Trache, A. Azhari, H.L. Clark, C.A. Gagliardi, Y.-W. Lui, A.M. Mukhamedzhanov, R.E. Tribble, F. Carstoiu. Optical model potentials involving loosely bound pshell nuclei around 10 MeV/nucleon. Phys. Rev. C 61, 024612 (2000).
https://doi.org/10.1103/PhysRevC.61.024612
I.J. Thompson. Getting Started with FRESCO, unpublished (2010).
R. Chatterjee, J. Oko lowicz, M. P loszajczak. Description of the 17F(p, γ)18Ne radiative capture reaction in the continuum shell model. Nucl. Phys. A 764, 528 (2006).
https://doi.org/10.1016/j.nuclphysa.2005.10.002
S.D. Pain. Advances in instrumentation for nuclear astrophysics. AIP Advances 4, 041015 (2014).
https://doi.org/10.1063/1.4874116
J.C. Blackmon (for the RIBENS Collaboration). Spectroscopy with radioactive ion beams at the HRIBF for nuclear astrophysics. J. Phys. G: Nucl. Part. Phys. 31, S1405 (2005).
https://doi.org/10.1088/0954-3899/31/10/004
M. Wiescher, J. G¨orres, F.K. Thielemann. 17F(p,γ)18Ne in explosive hydrogen burning. Astrophys. J. 326, 384 (1988).
https://doi.org/10.1086/166100
S.S. Chandel, S.K. Dhiman, R. Shyam. Structure of 8B and astrophysical S17 factor in Skyrme Hartree-Fock theory. Phys. Rev. C 68, 054320 (2003).
https://doi.org/10.1103/PhysRevC.68.054320
A. Azhari, V. Burjan, F. Carstoiu, C.A. Gagliardi, V. Kroha, A.M. Mukhamedzhanov, X. Tang, L. Trache, R.E. Tribble. The 14N(7Be, 8B)13C reaction and the 7Be(p, γ)8B S factor. Phys. Rev. C 60, 055803 (1999).
A.M. Moro, R. Crespo, F.M. Nunes, I.J. Thompson. Breakup and core coupling in 14N(7Be, 8B)13C. Phys. Rev. C 67, 047602 (2003).
A.M. Moro, R. Crespo, F.M. Nunes, I.J. Thompson. 8B breakup in elastic and transfer reactions. Phys. Rev. C 66, 024612 (2002).
https://doi.org/10.1103/PhysRevC.66.024612
I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7, 167 (1988).
https://doi.org/10.1016/0167-7977(88)90005-6
J. Cook. DFPOT - A program for the calculation of double folded potentials. Commun. Comput. Phys. 25, 125 (1982).
https://doi.org/10.1016/0010-4655(82)90029-7
M. Aygun. Comprehensive research of 10C nucleus using different theoretical approaches. Ukr. J. Phys. 66, 8 (2021).
https://doi.org/10.15407/ujpe66.8.653
M. Aygun. A comparison of proximity potentials in the analysis of heavy-ion elastic cross sections. Ukr. J. Phys. 63, 881 (2018).
https://doi.org/10.15407/ujpe63.10.881
M. Aygun. Effects of proximity potentials on the crosssections of 6,8He + 65Cu halo fusion reactions. Ukr. J. Phys. 64, 363 (2019).
https://doi.org/10.15407/ujpe64.5.363
M. Aygun. A comparative analysis of the density distributions and the structure models of 9Li. Pramana - J. Phys. 88, 53 (2017).
https://doi.org/10.1007/s12043-016-1360-1
M. Aygun, Z. Aygun, N. Karaali. A comprehensive analysis of 26Mg(3H, 2H)27Mg reaction at 36 MeV. Rev. Mex. F'ıs. 69, 051201 (2023).
https://doi.org/10.31349/RevMexFis.69.051201
M. Aygun, Z. Aygun, N. Karaali. Analysis of 6Li(3He, d)7Be transfer reaction for different approaches. Acta Phys. Pol. B 54, 5-A1 (2023).
https://doi.org/10.5506/APhysPolB.54.5-A1
A.A. Ibraheem, M. Aygun, N.A.M. Alsaif, A. Alghamdi, Sh. Hamada. Analysis of d +6,7,9,11Li elastic scattering using different densities and calculation procedures. Phys. Scr. 97, 085304 (2022).
https://doi.org/10.1088/1402-4896/ac824e
R.K. Gupta, D. Singh, W. Greiner. Semiclassical and microscopic calculations of the spin-orbit density part of the Skyrme nucleus-nucleus interaction potential with temperature effects included. Phys. Rev. C 75, 024603 (2007).
https://doi.org/10.1103/PhysRevC.75.024603
O.N. Ghodsi, F. Torabi. Comparative study of fusion barriers using Skyrme interactions and the energy density functional. Phys. Rev. C 92, 064612 (2015).
https://doi.org/10.1103/PhysRevC.92.064612
R.K. Gupta, D. Singh, R. Kumar, W. Greiner. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach. J. Phys. G: Nucl. Part. Phys. 36, 075104 (2009).
https://doi.org/10.1088/0954-3899/36/7/075104
L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. CпїЅndido Ribeiro, E.S. Rossi, Jr., C.P. Silva. Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610 (2002).
https://doi.org/10.1103/PhysRevC.66.014610
W.M. Seif, H. Mansour. Systematics of nucleon density distributions and neutron skin of nuclei. Int. J. Mod. Phys. E 24, 1550083 (2015).
https://doi.org/10.1142/S0218301315500834
C. Ngˆo, B. Tamain, M. Beiner, R.J. Lombard, D. Mas, H.H. Deubler. Properties of heavy ion interaction potentials calculated in the energy density formalism. Nucl. Phys. A 252, 237 (1975).
https://doi.org/10.1016/0375-9474(75)90614-4
H. Ngˆo, C. Ngˆo. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nucl. Phys. A 348, 140 (1980).
https://doi.org/10.1016/0375-9474(80)90550-3
H. Schechter, L.F. Canto. Proximity formulae for folding potentials. Nucl. Phys. A 315, 470 (1979).
https://doi.org/10.1016/0375-9474(79)90623-7
S.C. Pieper, K. Varga, R.B. Wiringa. Quantum Monte Carlo calculations of A = 9, 10 nuclei. Phys. Rev. C 66, 044310 (2002).
https://doi.org/10.1103/PhysRevC.66.044310
https://www.phy.anl.gov/theory/research/density/.
D. Singh, R.K. Gupta. Proceedings of DAE-BRNS Symposium on Nuclear Physics, Mumbai, India (2003), Vol. B46, p. 254.
S. Shlomo, J.B. Natowitzi. Temperature and mass dependence of level density parameter. Phys. Rev. C 44, 2878 (1991).
https://doi.org/10.1103/PhysRevC.44.2878
J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang. Proximity forces. Ann. Phys. (NY) 105, 427 (1977).
https://doi.org/10.1016/0003-4916(77)90249-4
I. Dutt, R.K. Puri. Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81, 064609 (2010).
https://doi.org/10.1103/PhysRevC.81.064609
W.D. Myers, W.J. Swiatecki. Nuclear masses and deformations. Nucl. Phys. 81, 1 (1966).
https://doi.org/10.1016/0029-5582(66)90639-0
W. Reisdorf. Heavy-ion reactions close to the Coulomb barrier. J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994).
https://doi.org/10.1088/0954-3899/20/9/004
L. Zhang, Y. Gao, H. Zheng, M.R. Huang, X. Liu. Moments of the three-parameter Fermi distribution. Mod. Phys. Lett. A 32, 1750195 (2017).
https://doi.org/10.1142/S0217732317501954
A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995).
https://doi.org/10.1016/0375-9474(95)00374-A
R. Bass. Threshold and angular momentum limit in the complete fusion of heavy ions. Phys. Lett. B 47, 139 (1973).
https://doi.org/10.1016/0370-2693(73)90590-X
R. Bass. Fusion of heavy nuclei in a classical model. Nucl. Phys. A 231, 45 (1974).
https://doi.org/10.1016/0375-9474(74)90292-9
R. Bass. Nucleus-nucleus potential deduced from experimental fusion cross sections. Phys. Rev. Lett. 39, 265 (1977).
https://doi.org/10.1103/PhysRevLett.39.265
P.R. Christensen, A. Winther. The evidence of the ion-ion potentials from heavy ion elastic scattering. Phys. Lett. B 65, 19 (1976).
https://doi.org/10.1016/0370-2693(76)90524-4
P.G. Reinhard. The relativistic mean-field description of nuclei and nuclear dynamics. Rep. Prog. Phys. 52, 439 (1989).
https://doi.org/10.1088/0034-4885/52/4/002
H. Toki, Y. Sugahara, D. Hirata, B.V. Carlson, I. Tanihata. Properties of nuclei far from the stability line in the relativistic hartree theory. Nucl. Phys. A 524, 633 (1991).
https://doi.org/10.1016/0375-9474(91)90266-9
G.A. Lalazissis, J. K¨onig, P Ring. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540 (1997).
https://doi.org/10.1103/PhysRevC.55.540
G. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A.V. Afanasjev, P. Ring. The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009).
https://doi.org/10.1016/j.physletb.2008.11.070
L.D. Miller, A.E.S. Green. Relativistic self-consistent meson field theory of spherical nuclei. Phys. Rev. C 5, 241 (1972).
https://doi.org/10.1103/PhysRevC.5.241
R. Brockmann, W. Weise. Spin-orbit coupling in a relativistic Hartree model for finite nuclei. Phys. Rev. C 16, 1282 (1977).
https://doi.org/10.1103/PhysRevC.16.1282
R. Brockmann. Relativistic Hartree-Fock description of nuclei. Phys. Rev. C 18, 1510 (1978).
https://doi.org/10.1103/PhysRevC.18.1510
A. Spatafora et al. (NUMEN Collaboration). Multichannel experimental and theoretical approach to the 12C(18O, 18F)12B single-charge-exchange reaction at 275 MeV: Initial-state interaction and single-particle properties of nuclear wave functions. Phys. Rev. C 107, 024605 (2023).
https://doi.org/10.1103/PhysRevC.107.024605
J.C. Blackmon et al. The 17F(p, γ)18Ne direct capture cross section. Nucl. Phys. A 746, 365c (2004).
https://doi.org/10.1016/j.nuclphysa.2004.09.054
M. Aygun, Z. Aygun. A comprehensive analysis of 9Li + 70Zn fusion cross section by using proximity potentials, temperature dependent density distributions and nuclear potentials. Rev. Mex. Fis. 65, 573 (2019).
https://doi.org/10.31349/RevMexFis.65.573
L. Guo-Qiang, X. Gong-Ou. Optical potential and the fusion barrier of two hot nuclei. Phys. Rev. C 41, 169 (1990).
https://doi.org/10.1103/PhysRevC.41.169
M. Rashdan, A. Faessler, M. Ismail, N. Ohtsuka. The temperature dependence of the Hi optical potential. Nucl. Phys. A 468, 168 (1987).
https://doi.org/10.1016/0375-9474(87)90322-8
R.K. Puri, N. Ohtsuka, E. Lehmann, A. Faessler, M.A. Matin, Dao T. Khoa, G. Batko, S.W. Huang. Temperature-dependent mean field and its effect on heavy-ion reactions. Nucl. Phys. A 575, 733 (1994)
https://doi.org/10.1016/0375-9474(94)90164-3
M. Aygun. Comparative analysis of proximity potentials to describe scattering of 13C projectile off 12C, 16O, 28Si and 208Pb nuclei. Rev. Mex. Fis. 64, 149 (2018).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.