Chirality Production during Axion Inflation

Authors

  • E.V. Gorbar Taras Shevchenko National University of Kyiv, Physics Faculty, Bogolyubov Institute for Theoretical Physics
  • A.I. Momot Taras Shevchenko National University of Kyiv, Physics Faculty
  • I.V. Rudenok Taras Shevchenko National University of Kyiv, Physics Faculty
  • O.O. Sobol Institute of Physics, Laboratory of Particle Physics and Cosmology, ´ Ecole Polytechnique F´ed´erale de Lausanne, Taras Shevchenko National University of Kyiv, Physics Faculty
  • S.I. Vilchinskii Taras Shevchenko National University of Kyiv, Physics Faculty, D´epartement de Physique Th´eorique, Center for Astroparticle Physics, Universit´e de Gen`eve
  • I.V. Oleinikova Kyiv National University of Technologies and Design

DOI:

https://doi.org/10.15407/ujpe68.11.717

Keywords:

axion inflation, gradient-expansion formalism, Schwinger effect, chiral anomaly, chiral asymmetry

Abstract

We study the generation of a chiral charge during the axion inflation, where the pseudoscalar inflaton field φ couples axially to the electromagnetic field via the term (β/Mp)φ E · B with the dimensionless coupling constant β. To describe the evolution of the electromagnetic field and to determine ⟨E·B⟩ sourcing the chiral asymmetry during the inflation due to the chiral anomaly, we employ the gradient-expansion formalism. It operates with a set of vacuum expectation values of the bilinear electromagnetic functions and allows us to consider the backreaction of generated fields on the inflaton evolution, as well as the Schwinger production of charged fermions. In addition, we assume that the produced fermions thermalize and include the chiral magnetic effect contribution to the electric current given by jCME = e2/(2π25B, where μ5 is the chiral chemical potential which quantifies the produced chiral asymmetry. Solving a set of equations for the inflaton field, scale factor, quadratic functions of the electromagnetic field, and the chiral charge density (chiral chemical potential), we find that the chirality production is quite efficient leading to the generation of a large chiral chemical potential at the end of the axion inflation.

References

E.R. Harrison. Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1, 2726 (1970).

https://doi.org/10.1103/PhysRevD.1.2726

Ya.B. Zeldovich. A hypothesis, unifying the structure and the entropy of the Universe. Mon. Not. R. Astron. Soc. 160, 1P (1972).

https://doi.org/10.1093/mnras/160.1.1P

G.V. Chibisov, V.F. Mukhanov. Galaxy formation and phonons, Mon. Not. R. Astron. Soc. 200, 535 (1982).

https://doi.org/10.1093/mnras/200.3.535

V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rep. 215, 203 (1992).

https://doi.org/10.1016/0370-1573(92)90044-Z

R. Durrer. The Cosmic Microwave Background (Cambridge University Press, 2008).

https://doi.org/10.1017/CBO9780511817205

M.S. Turner, L.M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988).

https://doi.org/10.1103/PhysRevD.37.2743

B. Ratra. Cosmological "seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992).

https://doi.org/10.1086/186384

W.D. Garretson, G.B. Field, S.M. Carroll. Primordial magnetic fields from pseudo-Goldstone bosons. Phys. Rev. D 46, 5346 (1992).

https://doi.org/10.1103/PhysRevD.46.5346

A.D. Dolgov. Breaking of conformal invariance and electromagnetic field generation in the Universe. Phys. Rev. D 48, 2499 (1993).

https://doi.org/10.1103/PhysRevD.48.2499

D. Grasso, H.R. Rubinstein. Magnetic fields in the early Universe. Phys. Rep. 348, 163 (2001).

https://doi.org/10.1016/S0370-1573(00)00110-1

P.P. Kronberg. Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994).

https://doi.org/10.1088/0034-4885/57/4/001

L.M. Widrow. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002).

https://doi.org/10.1103/RevModPhys.74.775

M. Giovannini. The magnetized Universe. Int. J. Mod. Phys. D 13, 391 (2004).

https://doi.org/10.1142/S0218271804004530

A. Kandus, K.E. Kunze, C.G. Tsagas. Primordial magnetogenesis. Phys. Rep. 505, 1 (2011).

https://doi.org/10.1016/j.physrep.2011.03.001

J.P. Vall'ee. Magnetic fields in the galactic Universe, as observed in supershells, galaxies, intergalactic and cosmic realms. New Astron. Rev. 55, 91 (2011).

https://doi.org/10.1016/j.newar.2011.01.002

D. Ryu, D.R.G. Schleicher, R.A. Treumann, C.G. Tsagas, L.M. Widrow. Magnetic fields in the large-scale structure of the Universe. Space Sci. Rev. 166, 1 (2012).

https://doi.org/10.1007/s11214-011-9839-z

R. Durrer, A. Neronov. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013).

https://doi.org/10.1007/s00159-013-0062-7

K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016).

https://doi.org/10.1088/0034-4885/79/7/076901

F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, P. Coppi. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010).

https://doi.org/10.1111/j.1745-3933.2010.00884.x

S. Ando, A. Kusenko. Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields. Astrophys. J. Lett. 722, L39 (2010).

https://doi.org/10.1088/2041-8205/722/1/L39

A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010).

https://doi.org/10.1126/science.1184192

F. Tavecchio, G. Ghisellini, G. Bonnoli, L. Foschini. Extreme TeV blazars and the intergalactic magnetic field. Mon. Not. R. Astron. Soc. 414, 3566 (2011).

https://doi.org/10.1111/j.1365-2966.2011.18657.x

K. Dolag, M. Kachelriess, S. Ostapchenko, R. Tomas. Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys. J. Lett. 727, L4 (2011).

https://doi.org/10.1088/2041-8205/727/1/L4

C.D. Dermer, M. Cavadini, S. Razzaque, J.D. Finke, J. Chiang, B. Lott. Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field. Astrophys. J. Lett. 733, L21 (2011).

https://doi.org/10.1088/2041-8205/733/2/L21

A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011).

https://doi.org/10.1051/0004-6361/201116441

H. Huan, T. Weisgarber, T. Arlen, S.P. Wakely. A new model for gamma-ray cascades in extragalactic magnetic fields. Astrophys. J. Lett. 735, L28 (2011).

https://doi.org/10.1088/2041-8205/735/2/L28

I. Vovk, A.M. Taylor, D. Semikoz, A. Neronov. Fermi/LAT observations of 1ES 0229+200: Implications for extragalactic magnetic fields and background light. Astrophys. J. Lett. 747, L14 (2012).

https://doi.org/10.1088/2041-8205/747/1/L14

C. Caprini, S. Gabici. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015).

https://doi.org/10.1103/PhysRevD.91.123514

R.A. Batista, A. Saveliev. The gamma-ray window to intergalactic magnetism. Universe 7, 223 (2021).

https://doi.org/10.3390/universe7070223

M.M. Anber, L. Sorbo. N-flationary magnetic fields. J. Cosmol. Astropart. Phys. 10, 018 (2006).

https://doi.org/10.1088/1475-7516/2006/10/018

M.M. Anber, L. Sorbo. Naturally inflating on steep potentials through electromagnetic dissipation. Phys. Rev. D 81, 043534 (2010).

https://doi.org/10.1103/PhysRevD.81.043534

R. Durrer, L. Hollenstein, R.K. Jain. Can slow roll inflation induce relevant helical magnetic fields? J. Cosmol. Astropart. Phys. 03, 037 (2011).

https://doi.org/10.1088/1475-7516/2011/03/037

N. Barnaby, E. Pajer, M. Peloso. Gauge field production in axion inflation: consequences for monodromy, nonGaussianity in the CMB, and gravitational waves at interferometers. Phys. Rev. D 85, 023525 (2012).

https://doi.org/10.1103/PhysRevD.85.023525

C. Caprini, L. Sorbo. Adding helicity to inflationary magnetogenesis. J. Cosmol. Astropart. Phys. 10, 056 (2014).

https://doi.org/10.1088/1475-7516/2014/10/056

M.M. Anber, E. Sabancilar. Hypermagnetic fields and baryon asymmetry from pseudoscalar inflation. Phys. Rev. D 92, 101501(R) (2015).

https://doi.org/10.1103/PhysRevD.92.101501

K.-W. Ng, S.-L. Cheng, W. Lee. Inflationary dilaton-axion magnetogenesis. Chin. J. Phys. 53, 110105 (2015).

T. Fujita, R. Namba, Y. Tada, N. Takeda, H. Tashiro. Consistent generation of magnetic fields in axion inflation models. J. Cosmol. Astropart. Phys. 05, 054 (2015).

https://doi.org/10.1088/1475-7516/2015/05/054

P. Adshead, J.T. Giblin, Jr., T.R. Scully, E.I. Sfakianakis. Gauge-preheating and the end of axion inflation. J. Cosmol. Astropart. Phys. 12, 034 (2015).

https://doi.org/10.1088/1475-7516/2015/12/034

P. Adshead, J.T. Giblin, Jr., T.R. Scully, E.I. Sfakianakis. Magnetogenesis from axion inflation. J. Cosmol. Astropart. Phys. 10, 039 (2016).

https://doi.org/10.1088/1475-7516/2016/10/039

A. Notari, K. Tywoniuk. Dissipative axial inflation. J. Cosmol. Astropart. Phys. 12, 038 (2016).

https://doi.org/10.1088/1475-7516/2016/12/038

D. Jim'enez, K. Kamada, K. Schmitz, X. Xu. Baryon asymmetry and gravitational waves from pseudoscalar inflation. J. Cosmol. Astropart. Phys. 12, 011 (2017).

https://doi.org/10.1088/1475-7516/2017/12/011

V. Domcke, K. Mukaida. Gauge field and fermion production during axion inflation. J. Cosmol. Astropart. Phys. 11, 020 (2018).

https://doi.org/10.1088/1475-7516/2018/11/020

J.R.C. Cuissa, D.G. Figueroa. Lattice formulation of axion inflation. Application to preheating. J. Cosmol. Astropart. Phys. 06, 002 (2019).

https://doi.org/10.1088/1475-7516/2019/06/002

Yu. Shtanov. Viable inflationary magnetogenesis with helical coupling. J. Cosmol. Astropart. Phys. 10, 008 (2019).

https://doi.org/10.1088/1475-7516/2019/10/008

Y.V. Shtanov, M.V. Pavliuk. Inflationary magnetogenesis with helical coupling. Ukr. J. Phys. 64 (11), 1009 (2019).

https://doi.org/10.15407/ujpe64.11.1009

O.O. Sobol, E.V. Gorbar, S.I. Vilchinskii. Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019).

https://doi.org/10.1103/PhysRevD.100.063523

V. Domcke, B. von Harling, E. Morgante, K. Mukaida. Baryogenesis from axion inflation. J. Cosmol. Astropart. Phys. 10, 032 (2019).

https://doi.org/10.1088/1475-7516/2019/10/032

V. Domcke, Y. Ema, K. Mukaida. Chiral anomaly, Schwinger effect, Euler-Heisenberg lagrangian, and application to axion inflation. J. High Energy Phys. 02, 055 (2020).

https://doi.org/10.1007/JHEP02(2020)055

V. Domcke, V. Guidetti, Y. Welling, A. Westphal. Resonant backreaction in axion inflation. J. Cosmol. Astropart. Phys. 09, 009 (2020).

https://doi.org/10.1088/1475-7516/2020/09/009

E.V. Gorbar, K. Schmitz, O.O. Sobol, S.I. Vilchinskii. Gauge-field production during axion inflation in the gradient expansion formalism. J. High Energy Phys. 02, 055 (2020).

https://doi.org/10.1103/PhysRevD.104.123504

M. Joyce, M.E. Shaposhnikov. Primordial magnetic fields, right-handed electrons, and the abelian anomaly. Phys. Rev. Lett. 79, 1193 (1997).

https://doi.org/10.1103/PhysRevLett.79.1193

A. Boyarsky, J. Fr¨ohlich, O. Ruchayskiy. Self-consistent evolution of magnetic fields and chiral asymmetry in the early universe. Phys. Rev. Lett. 108, 031301 (2012).

https://doi.org/10.1103/PhysRevLett.108.031301

R. Banerjee, K. Jedamzik. Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present. Phys. Rev. D 70, 123003 (2004).

https://doi.org/10.1103/PhysRevD.70.123003

H. Tashiro, T. Vachaspati, A. Vilenkin. Chiral effects and cosmic magnetic fields. Phys. Rev. D 86, 105033 (2012).

https://doi.org/10.1103/PhysRevD.86.105033

Y. Hirono, D. Kharzeev, Y. Yin. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly. Phys. Rev. D 92, 125031 (2015).

https://doi.org/10.1103/PhysRevD.92.125031

M. Dvornikov, V. B. Semikoz. Influence of the turbulent motion on the chiral magnetic effect in the early Universe. Phys. Rev. D 95, 043538 (2017).

https://doi.org/10.1103/PhysRevD.95.043538

E. V. Gorbar, I. Rudenok, I. A. Shovkovy, and S. Vilchinskii, Anomaly-driven inverse cascade and inhomogeneities in a magnetized chiral plasma in the early Universe. Phys. Rev. D 94, 103528 (2016).

https://doi.org/10.1103/PhysRevD.94.103528

A. Brandenburg, J. Schober, I. Rogachevskii, T. Kahniashvili, A. Boyarsky, J. Fr¨ohlich, O. Ruchayskiy, N. Kleeorin. The turbulent chiral-magnetic cascade in the early Universe. Astrophys. J. Lett. 845, L21 (2017).

https://doi.org/10.3847/2041-8213/aa855d

J. Schober, A. Brandenburg, I. Rogachevskii. Chiral fermion asymmetry in high-energy plasma simulations. Geophys. Astrophys. Fluid Dyn. 114, 106 (2020).

https://doi.org/10.1080/03091929.2019.1591393

L. Parker. Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968).

https://doi.org/10.1103/PhysRevLett.21.562

F. Sauter. ¨Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs (On the behavior of an electron in the homogeneous electric field according to the relativistic theory of Dirac), Z. Phys. 69, 742 (1931).

https://doi.org/10.1007/BF01339461

W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons (Conclusions from Dirac's theory of the positron). Z. Phys. 98, 714 (1936).

https://doi.org/10.1007/BF01343663

J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).

https://doi.org/10.1103/PhysRev.82.664

S.L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969).

https://doi.org/10.1103/PhysRev.177.2426

J.S. Bell, R. Jackiw. A PCAC puzzle: π0→ γγ in the σ model. Nuovo Cim. A 60, 47 (1969).

https://doi.org/10.1007/BF02823296

T. Kobayashi, N. Afshordi. Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe. J. High Energy Phys. 10, 166 (2014).

https://doi.org/10.1007/JHEP10(2014)166

M.B. Fr¨ob, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka, A. Vilenkin. Schwinger effect in de Sitter space. J. Cosmol. Astropart. Phys. 04, 009 (2014).

https://doi.org/10.1088/1475-7516/2014/04/009

E. Bavarsad, C. Stahl, S.-S. Xue. Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 94, 104011 (2016).

https://doi.org/10.1103/PhysRevD.94.104011

C. Stahl, E. Strobel, S.-S. Xue. Fermionic current and Schwinger effect in de Sitter spacetime. Phys. Rev. D 93, 025004 (2016).

https://doi.org/10.1103/PhysRevD.93.025004

C. Stahl, S.-S. Xue. Schwinger effect and backreaction in de Sitter spacetime. Phys. Lett. B 760, 288 (2016).

https://doi.org/10.1016/j.physletb.2016.07.011

T. Hayashinaka, T. Fujita, J. Yokoyama. Fermionic Schwinger effect and induced current in de Sitter space. J. Cosmol. Astropart. Phys. 07, 010 (2016).

https://doi.org/10.1088/1475-7516/2016/07/010

T. Hayashinaka, J. Yokoyama. Point splitting renormalization of Schwinger induced current in de Sitter spacetime. J. Cosmol. Astropart. Phys. 07, 012 (2016).

https://doi.org/10.1088/1475-7516/2016/07/012

R. Sharma, S. Singh. Multifaceted Schwinger effect in de Sitter space. Phys. Rev. D 96, 025012 (2017).

https://doi.org/10.1103/PhysRevD.96.025012

E. Bavarsad, S.P. Kim, C. Stahl, S.-S. Xue. Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 97, 025017 (2018).

https://doi.org/10.1103/PhysRevD.97.025017

J.-J. Geng, B.-F. Li, J. Soda, A. Wang, Q. Wu, T. Zhu. Schwinger pair production by electric field coupled to inflaton. J. Cosmol. Astropart. Phys. 02, 018 (2018).

https://doi.org/10.1088/1475-7516/2018/02/018

T. Hayashinaka, S.-S. Xue. Physical renormalization condition for de Sitter QED. Phys. Rev. D 97, 105010 (2018).

https://doi.org/10.1103/PhysRevD.97.105010

T. Hayashinaka. Analytical Investigation into Electromagnetic Response of Quantum Fields in de Sitter Spacetime. Ph.D. thesis (University of Tokyo, 2018).

M. Giovannini. Spectator electric fields, de Sitter spacetime, and the Schwinger effect. Phys. Rev. D 97, 061301(R) (2018).

https://doi.org/10.1103/PhysRevD.97.061301

M. Banyeres, G. Dom'enech, J. Garriga. Vacuum birefringence and the Schwinger effect in (3+1) de Sitter. J. Cosmol. Astropart. Phys. 10, 023 (2018).

https://doi.org/10.1088/1475-7516/2018/10/023

C. Stahl. Schwinger effect impacting primordial magnetogenesis. Nucl. Phys. B 939, 95 (2018).

https://doi.org/10.1016/j.nuclphysb.2018.12.017

H. Kitamoto. Schwinger effect in inflaton-driven electric field. Phys. Rev. D 98, 103512 (2018).

https://doi.org/10.1103/PhysRevD.98.103512

O.O. Sobol, E.V. Gorbar, M. Kamarpour, S.I. Vilchinskii. Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018).

https://doi.org/10.1103/PhysRevD.98.063534

Yu. Shtanov, M. Pavliuk. Model-independent constraints in inflationary magnetogenesis. J. Cosmol. Astropart. Phys. 08, 042 (2020).

https://doi.org/10.1088/1475-7516/2020/08/042

W. Tangarife, K. Tobioka, L. Ubaldi, T. Volansky. Dynamics of relaxed inflation. J. High Energy Phys. 02, 084 (2018).

https://doi.org/10.1007/JHEP02(2018)084

W.Z. Chua, Q. Ding, Y. Wang, S. Zhou. Imprints of Schwinger effect on primordial spectra. J. High Energy Phys. 04, 066 (2019).

https://doi.org/10.1007/JHEP04(2019)066

S. Shakeri, M.A. Gorji, H. Firouzjahi. Schwinger mechanism during inflation. Phys. Rev. D 99, 103525 (2019).

https://doi.org/10.1103/PhysRevD.99.103525

E.V. Gorbar, A.I. Momot, O.O. Sobol, S.I. Vilchinskii. Kinetic approach to the Schwinger effect during inflation. Phys. Rev. D 100, 123502 (2019).

https://doi.org/10.1103/PhysRevD.100.123502

O.O. Sobol, E.V. Gorbar, A.I. Momot, S.I. Vilchinskii. Schwinger production of scalar particles during and after inflation from the first principles. Phys. Rev. D 102, 023506 (2020).

https://doi.org/10.1103/PhysRevD.102.023506

V. Domcke, K. Schmitz, T. You. Cosmological relaxation through the dark axion portal. J. High Energy Phys. 07, 126 (2022).

https://doi.org/10.1007/JHEP07(2022)126

D.E. Kharzeev. The chiral magnetic effect and anomalyinduced transport. Prog. Part. Nucl. Phys. 75, 133 (2014).

https://doi.org/10.1016/j.ppnp.2014.01.002

B.A. Campbell, S. Davidson, J.R. Ellis, K.A. Olive. On the baryon, lepton flavor and right-handed electron asymmetries of the universe. Phys. Lett. B 297, 118 (1992).

https://doi.org/10.1016/0370-2693(92)91079-O

D. B¨odeker, D. Schr¨oder. Equilibration of right-handed electrons. J. Cosmol. Astropart. Phys. 05, 010 (2019).

https://doi.org/10.1088/1475-7516/2019/05/010

D.H. Lyth, D. Seery. Classicality of the primordial perturbations. Phys. Lett. B 662, 309 (2008).

https://doi.org/10.1016/j.physletb.2008.03.010

M.C. Guzzetti, N. Bartolo, M. Liguori, S. Matarrese. Gravitational waves from inflation. Riv. Nuovo Cim. 39, 399 (2016).

Downloads

Published

2023-12-18

How to Cite

Gorbar, E., Momot, A., Rudenok, I., Sobol, O., Vilchinskii, S., & Oleinikova, I. (2023). Chirality Production during Axion Inflation. Ukrainian Journal of Physics, 68(11), 717. https://doi.org/10.15407/ujpe68.11.717

Issue

Section

Fields and elementary particles

Most read articles by the same author(s)