Assessment of the Structure of 180Hg Nucleus through IBM-1 and IBM-2 Models

Authors

  • Bashar Alaa Alkotbe Departments of Physics, College of Science, University of Kerbala
  • Mahdi J.S. Al Musawi Deptartment of Medical Physics, College of Medicine, University of Kerbala
  • Huda H. Kassim Departments of Physics, College of Science, University of Kerbala
  • Asmaa A. Elbndag Department of Physics, Faculty of Science, University of Tripoli
  • M.A. Al-Jubbori Departments of Physics, College of Education for Pure Sciences, University of Mosul
  • I. Hossain Department of Physics, Rabigh College of Science & Arts, King Abdulaziz University
  • Fadhil I. Sharrad Departments of Physics, College of Science, University of Kerbala, College of Health and Medical Technology, University of Alkafeel https://orcid.org/0000-0002-1303-1936
  • N. Aldahan Departments of Physics, College of Science, University of Kerbala, College of Health and Medical Technology, University of Alkafeel

DOI:

https://doi.org/10.15407/ujpe70.3.143

Keywords:

IBM-1, IBM-2, energy level, B(E2), potential energy surface, 180Hg

Abstract

We will explain the aspects of 180Hg nucleus through the interacting boson model (IBM-1) and IBM-2. This nucleus is expected to be typical in the limit of the U(5) symmetry which is deliberate to elucidate the properties of 180Hg nucleus. A suitable method for fitting is expected to improve the best parameters for a convinced calculated energy level of this nucleus. The intended three energy bands such as ground, gamma, and beta bands in both models are studied and compared with the data obtained earlier by M.A. Al-Jubbori, I. Hossain, F.I. Sharrad, and N. Aldahan. The strengths of quadrupole electromagnetic transitions B(E2) of this nucleus in IBM-1 and IBM-2 models are calculated and matched with reasonable earlier measured data. The potential energy surfaces (PES) of this nucleus for the distortion parameter in the U(5) symmetry in IBM-1 is analyzed. All data on 180Hg nucleus are well consistent with available measured data.

References

1. F. Iachello, A. Arima. The Interacting Boson Model (Cambridge University Press, 1987) [ISBN: 9780511895517].

https://doi.org/10.1017/CBO9780511895517

2. A. Arima, T. Otsuka, F. lachello, I. Talmi. Collective nuclear states as symmetric coupling of proton and neutron excitations. Phys. Lett. B 66 (3), 205 (1977).

https://doi.org/10.1016/0370-2693(77)90860-7

3. T. Ostuka, A. Arima, F. Iachello, I. Talmi. Shell model description of interacting bosons. Phys. Lett. B 76, 139 (1978).

https://doi.org/10.1016/0370-2693(78)90260-5

4. G.L. Long, S.J. Zhu, H.Z. Sun. Description of 116,118,120Cd in the interacting boson model. J. Phys. G Nucl. Part. Phys. 21, 331 (1995).

https://doi.org/10.1088/0954-3899/21/3/008

5. F. Iachello. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87, 525052 (2001).

https://doi.org/10.1103/PhysRevLett.87.052502

6. P. Cejnar, J. Jolie, R.F. Casten. Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 82, 2155 (2010).

https://doi.org/10.1103/RevModPhys.82.2155

7. R.F. Casten, E.A. McCutchan. Quantum phase transitions and structural evolution in nuclei. J. Phys. G: Nucl. Part. Phys. 34, R285 (2007).

https://doi.org/10.1088/0954-3899/34/7/R01

8. M. Siciliano et al. Shape co-exixtence in neutron deficient 188Hg investigated lifetime measurement. Phys. Rev. C 102, 014318 (2020).

9. V. Prassa, K.E. Karakatssanis. Microscopic description of shape transions and shape coexistance in Hg isotopes. Bulgarian J. of Phys. 48, 495 (2021).

https://doi.org/10.55318/bgjp.2021.48.5-6.495

10. J.E. Garcia-Ramos, K. Heyde. "Disentangling the nuclear shape coexistence in even-even Hg isotopes using the interacting boson model." To appear in CGS15 conference proceedings. EPJ Web of conference. arXiv: 1410.2869 [nuclth], 2014.

https://doi.org/10.1103/PhysRevC.89.014306

11. Fahmi Sh. Radhi, Huda H. Kassim, Mushtaq A. AlJubbori, I. Hossain, Fadhil I. Sharrad, N. Aldahan, Hewa Y. Abdullah. Description of energy levels and decay properties in 158Gd nucleus. Nucl. Phys. AT Energy 24 (3), 209 (2023).

https://doi.org/10.15407/jnpae2023.03.209

12. I. Hossain, H.H. Kassim, M.A. Al-Jubbory, A. Saleh, K.K. Viswanathan, A. Salam, F.I. Sharrad. Study of O(6) symmetry in 108,110,112Ru isotopes by IBM-1 calculations. Prob. of Atom Sci. & Tech. 145 (3) 79 (2023).

https://doi.org/10.46813/2023-145-079

13. M.A. Al. Jubbori, H.H. Kassim, F.I. Sharrad, I. Hossain. Deformation properties of the even-even rare-earth Er-Os isotopes for N = 100. Int. J. Mod. Phys.E 27, 1850035 (2018).

https://doi.org/10.1142/S0218301318500350

14. M.A. Al. Jubbori, H.H. Kassim, A.A. Abd-Aljbar, H.Y. Abdullah, I. Hossain, I.M. Ahmed, F.I. Sharrad. Nuclear structure of the even-even rare-earth Er-Os nuclei for N = 102. Indian J. Phys. 94 (3), 379 (2020).

https://doi.org/10.1007/s12648-019-01461-3

15. M.A. Al-Jubbori, H.H. Kassim" E.M. Raheem, I.M. Ahmed, Z.T. Khodair, F.I. Sharrad, I. Hossain. Nuclear structure of rare-earth 172Er, 174Hf, 178W, 180Os nuclei. Ukr. J. Phys. 67 (2), 127 (2022).

https://doi.org/10.15407/ujpe67.2.127

16. S.A.A. Sahib, Huda H. Kassim, Fadhil I. Sharrad, I. Hossain. Explanation of the nuclear structure of even-even 76−82Se nuclei. Int. J. of Mod. Phys. E, 32, 2350055 (2023).

https://doi.org/10.1142/S0218301323500556

17. A. Salam, I. Hossain, Huda H. Kassim, Ahmed Saleh, A.H.H. Alghanmi, N. Aldahan, Fadhil I. Sharrad. B(E2) values of 186W and 186Os isobar through interacting Boson model. Paper in Phys. 15, 150005 (2023).

https://doi.org/10.4279/pip.150005

18. R.F. Casten, D.D. Warner. The interacting boson approximatin. Rev. Mod. Phys. 60, 389 (1988).

https://doi.org/10.1103/RevModPhys.60.389

19. A. Arima, F. Iachello. Interacting Boson Model of collective nuclear states II. The rotation limit. Ann. Phys. 111, 201 (1978).

https://doi.org/10.1016/0003-4916(78)90228-2

20. A. Arima, F. Iachello. Interacting boson model of collective states I. The virational limit. Ann. Phys. 99, 253 (1976).

https://doi.org/10.1016/0003-4916(76)90097-X

21. F. Iachello. Dynamic supersymmetries in nuclei. Phys. Rev. Lett. 44, 772 (1980).

https://doi.org/10.1103/PhysRevLett.44.772

22. O. Scholten. Computer Code PHINT, KVI (Groningen Holland, 1980).

23. I. Hossain, F.I. Sharrad, M.A. Saeed, H.Y. Abdullah, S.A. Mansour. B(E2) values of Te isotopes with even N(68-74) by means of interacting boson model-1. Maejo Intern. J. Sci. Techn. 10 (1), 95(2016).

24. W.N. Hussain, F.I. Sharrad. Low-lying states properties of the even-even 78Se and 80Kr isotopes. J. Phys.: Conf. Series 1032 (1) (2018).

https://doi.org/10.1088/1742-6596/1032/1/012046

25. G. Puddu, O. Scholten, T. Otsuka. Collective quadrupole states of Xe, Ba, and Ce in the interacting Boson Model. Nucl. Phys. A 348, 109 (1980).

https://doi.org/10.1016/0375-9474(80)90548-5

26. T. Otsuka, N.Yoshida. User's manual of the program NPBOS. Report JAERI-M 85-094 (Japan Atomic Energy Research Institute, 1985).

27. http://www.nnde.bnl.gov/ensdf/DatasetFetchServlet.

28. S.-C. Wu, H. Niu. Nuclear data Sheet for A = 180. Nucl. Data Sheets 100 (4), 483 (2003).

https://doi.org/10.1006/ndsh.2003.0018

29. E.A. Mccutchan. Nuclear data sheets for A = 180. Nucl. Data Sheets 126, 151 (2015).

https://doi.org/10.1016/j.nds.2015.05.002

30. J. Lange, K. Kumar, J.H. Hamilton. E0-E2-M1 multipole admixtures of transitions in even-even nuclei. Rev. Mod. Phys. 54, 119 (1982).

https://doi.org/10.1103/RevModPhys.54.119

31. L.M. Robledo, R. Rodriguez-Guzman, P. Sarriguren. Role of triaxiality in the ground-state shape of neutron-rich Yb, Hf, W. Os and Pt isotopes. J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).

https://doi.org/10.1088/0954-3899/36/11/115104

32. K. Nomura et al. D'erivation of IBM Hamiltonian for deformed nuclei. J. Phys.: Conf. Ser. 267 012050 (2011).

https://doi.org/10.1088/1742-6596/267/1/012050

33. I. Bentley, S. Frauendorf. Microscopic calculation of interacting boson model parameters by potential energy surface mapping. Phys. Rev. C 83, 064322 (2011).

https://doi.org/10.1103/PhysRevC.83.064322

Downloads

Published

2025-03-19

How to Cite

Alkotbe, B. A., Al Musawi, M. J., Kassim, H. H., Elbndag, A. A., Al-Jubbori, M., Hossain, I., … Aldahan, N. (2025). Assessment of the Structure of 180Hg Nucleus through IBM-1 and IBM-2 Models. Ukrainian Journal of Physics, 70(3), 143. https://doi.org/10.15407/ujpe70.3.143

Issue

Section

Fields and elementary particles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.