Calculation of Energy Levels B(E2) and B(M1) for 58,59Cu Isotopes by Using NushellX@MSU Code

Authors

  • A.K. Hasan Department of Physics, College of Education for Girls, University of Kufa
  • H.H. Abed Department of Physics, College of Education for Girls, University of Kufa

DOI:

https://doi.org/10.15407/ujpe69.4.223

Keywords:

B(E2), B(M1), jj44pn shell, 58,59Cu isotopes, effective interaction

Abstract

In this study, the NushellX@MSU code was applied to compute energy levels, B(E2) and B(M1), values for 58Cu and 59Cu isotopes, using the jj44pn shell and the jun45pn effective interaction. The model space encompassed all possible nucleon configurations within the (f5/2, p3/2, p1/2, and g9/2) orbits. Overall, the computed probabilities of electromagnetic transitions and energy levels for the 58Cu and 59Cu isotopes demonstrate a reasonable consistency with available experimental data.

References

J.M. Blatt, V.F. Weisskopf. Theoretical Nuclear Physics (Springer, 1979) [ISBN: 978-0-486-66827-7].

https://doi.org/10.1007/978-1-4612-9959-2

A. Hasan, F. Obeed, A. Rahim. Positive parity levels of 21,23Na isotopes by using the nuclear shell. Ukr. J. Phys. 65, 3 (2020).

https://doi.org/10.15407/ujpe65.1.3

B.A. Brown, B. Wildenthal. Status of the nuclear shell model. Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).

https://doi.org/10.1146/annurev.ns.38.120188.000333

P.C. Srivastava, I. Mehrotra. Large-scale shell model calculations for even-even 62,66Fe isotopes. J. Phys. G: Nucl. Part Phys. 36, 105106 (2009).

https://doi.org/10.1088/0954-3899/36/10/105106

A. Hasan. Shell model calculations for 18, 19, 20O isotopes by using USDA and USDB interactions. Ukr. J. Phys. 63, 189 (2018).

https://doi.org/10.15407/ujpe63.3.189

A.A. Al-Sammarrae, F.I. Sharrad, A. Aziz, N. Yusof, H.A. Kassim. Application of USDA and SDBA Hamiltonians in calculating the excited states of odd-A magnesium isotopes. Eur. Phys. J. Plus 129, 1 (2014).

https://doi.org/10.1140/epjp/i2014-14125-0

S. Cohen, D. Kurath, Effective interactions for the 1p shell. Nucl. Phys. 73, 1 (1965).

https://doi.org/10.1016/0029-5582(65)90148-3

A. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe. New T = 1 effective interactions for the f5/2, p3/2, p1/2, g9/2 model space: Implications for valence-mirror symmetry and seniority isomers. Phys. Rev. C 70, 044314 (2004).

https://doi.org/10.1103/PhysRevC.70.044314

F.A. Majeed, H. M. Tawfeek, S. M. Obaid. Large basis shell model calculations of some nuclei around doublymagic 56Ni. Int. J. Nucl. Energy Sci. Technol. 12, 370 (2018).

https://doi.org/10.1504/IJNEST.2018.097199

M. Hossain. Energy levels in 59Cu. Nuov. Cim. A 60, 157 (1980).

https://doi.org/10.1007/BF02902470

A. Hasan, H. Abed. Calculation of energy levels and B(E2) for 20Ne isotope by using nuclear shell model. Int. J. Sci. Res. Publ. 9, 8861 (2019).

https://doi.org/10.29322/IJSRP.9.04.2019.p8861

P.J. Brussaard, P.W Glaudemans. Shell-model applications in nuclear spectroscopy. Phys. Today 31, 68 (1978).

https://doi.org/10.1063/1.2994818

A. Hasan, A. Subber. Level structure of 210Po by means of surface delta interaction.Turk. J. Phys. 37, 348 (2013).

https://doi.org/10.3906/fiz-1211-15

B. Brown, W. Rae. The shell-model code NuShellX@ MSU. Nucl. Data Sheets 120, 115 (2014).

https://doi.org/10.1016/j.nds.2014.07.022

C. Nesaraja S. Geraedts, B. Singh. Nuclear data sheets for A = 58. Nucl. Data Sheets 111, 897 (2010).

https://doi.org/10.1016/j.nds.2010.03.003

S. Basunia. Nuclear data sheets for A = 59. Nucl. Data Sheets 151, 1 (2018).

https://doi.org/10.1016/j.nds.2018.08.001

Downloads

Published

2024-05-30

How to Cite

Hasan, A., & Abed, H. (2024). Calculation of Energy Levels B(E2) and B(M1) for 58,59Cu Isotopes by Using NushellX@MSU Code. Ukrainian Journal of Physics, 69(4), 223. https://doi.org/10.15407/ujpe69.4.223

Issue

Section

Fields and elementary particles