Inhomogeneity of the Ideal Gas of a Finite Number of Particles with Angular Momentum Conservation

Authors

  • D.M. Naplekov Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
  • V.V. Yanovsky Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine, V.N. Karazin Kharkiv National University

DOI:

https://doi.org/10.15407/ujpe69.1.26

Keywords:

ideal gas, finite number of particles, statistical distribution, angular momentum, law of conservation, round vessel

Abstract

We continue to study various aspects of the behavior of a classical ideal gas in a stationary axisymmetric container. The symmetry of the vessel leads to the conservation of the gas’s angular momentum and, hence, the state of gas rotation. We consider the case of a nonrotating two-dimensional gas of a finite number of colliding particles. In this case, the gas statistical distributions differ from the classical ones found in the nineteenth century. We will show that the filling of the axisymmetric vessel with a nonrotating gas is not uniform and provide the exact spatial distribution of gas particles. This previously unknown distribution depends on all the particle masses and is found explicitly. The absence of a rotation in gas layers is shown through the investigation of the distributions of the tangential components of particle momenta. We also show that, for any number of particles in a container, the behavior of a massive enough particle may be unusual. The analytic results are confirmed by simple numerical experiments.

References

J.W. Gibbs. Elementary Principles in Statistical Mechanics (Dover, 2015) [ISBN: 978-0486789958].

S.G. Brush. The Kinetic Theory of Gases, an Anthology of Classic Papers with Historical Commentary (Imperial College Press, 2003) [ISBN: 978-1783261055].

https://doi.org/10.1142/p281

R. Kubo, H. Ichimura, T. Usui, N. Hashitsume. Statistical Mechanics (North-Holland, 1990) [ISBN: 978-0444871039].

J.S. Rowlinson. The Maxwell-Boltzmann distribution. Mol. Phys. 103, 2821 (2005).

https://doi.org/10.1080/002068970500044749

A.I. Khinchin. Mathematical Foundations of Statistical Mechanics (Dover, 1949) [ISBN: 978-0486601472].

J.C. Maxwell. The Scientific Papers of James Clerk Maxwell (Dover, 2013) [ISBN: 978-0486781662].

R.C. Tolman. A general theory of energy partition with applications to quantum theory. Phys. Rev. 11, 261 (1918).

https://doi.org/10.1103/PhysRev.11.261

G. Magnano, B. Valsesia. On the generalised equipartition law. Ann. of Phys. 427, 168416 (2021).

https://doi.org/10.1016/j.aop.2021.168416

A. Haro, R. Llave. New mechanisms for lack of equipartition of energy. Phys. Rev. Lett. 85, 1859 (2000).

https://doi.org/10.1103/PhysRevLett.85.1859

C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78 (14), 2690 (1997).

https://doi.org/10.1103/PhysRevLett.78.2690

M. Esposito, C. Van den Broeck. Three detailed fluctuation theorems. Phys. Rev. Lett. 104 (9), 090601 (2010).

https://doi.org/10.1103/PhysRevLett.104.090601

J.C. Maxwell. A treatise on the kinetic theory of gases. Nature 16, 242 (1877).

https://doi.org/10.1038/016242a0

L.D. Landau, E.M. Lifshitz. Statistical Physics. Vol. 5 (Elsevier Science, 2013) [ISBN: 978-0080570464].

F. Becattinia, L. Ferroni. The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation. Eur. Phys. J. C 52, 597 (2007).

https://doi.org/10.1140/epjc/s10052-007-0403-7

T.K. Nakamura. Relativistic statistical mechanics with angular momentum. Prog. Theor. Phys. 127, 153 (2012).

https://doi.org/10.1143/PTP.127.153

I.M. Dubrovskii. The role of angular momentum conservation law in statistical mechanics. Cond. Matt. Phys. 11, 585 (2008).

https://doi.org/10.5488/CMP.11.4.585

N. Imara, L. Blitz. Angular momentum in giant molecular clouds. I. The milky way. ApJ 732, 78 (2011).

https://doi.org/10.1088/0004-637X/732/2/78

F. Chevy, K.W. Madison, J. Dalibard. Measurement of the angular momentum of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 85, 2223 (2000).

https://doi.org/10.1103/PhysRevLett.85.2223

S. Chapman, T.G. Cowling, D. Burnett, C. Cercignani. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, 1990) [ISBN: 978-0521408448].

D.M. Naplekov, V.V. Yanovsky. Distribution of energy in the ideal gas that lacks equipartition. Sci. Rep. 13, 3427 (2023).

https://doi.org/10.1038/s41598-023-30636-6

H. Poincare. Calcul des Probabilites (Gauthier-Villars, 1912) [ISBN: 978-1114755871].

D.M. Naplekov, V.P. Semynozhenko, V.V. Yanovsky. Equation of state of an ideal gas with nonergodic behavior in two connected vessels. Phys. Rev. E 89, 012920 (2014).

https://doi.org/10.1103/PhysRevE.89.012920

B.V. Chirikov, F.M. Izrailev, V.A. Tayursky. Numerical experiments on the statistical behaviour of dynamical systems with a few degrees of freedom. Comp. Phys. Comm. 5, 116 (1973).

https://doi.org/10.1016/0010-4655(73)90003-9

C.C. Zhou, Y.Z. Chen, W.S. Dai. Unified framework for generalized statistics: Canonical partition function, maximum occupation number, and permutation phase of wave function. J. Stat. Phys. 186, 19 (2022).

https://doi.org/10.1007/s10955-021-02865-4

A. Puglisi, A. Sarracino, A. Vulpiani. Temperature in and out of equilibrium: A review of concepts, tools and attempts. Physics Reports 709, 1 (2017).

https://doi.org/10.1016/j.physrep.2017.09.001

Y. Taniguchi, P. Karagiannis, M. Nishiyama, Y. Ishii, T. Yanagida. Single molecule thermodynamics in biological motors. BioSystems 88, 283 (2007).

https://doi.org/10.1016/j.biosystems.2006.08.016

S. Toyabe, E. Muneyuki. Experimental thermodynamics of single molecular motor. Biophysics 9, 91 (2013).

https://doi.org/10.2142/biophysics.9.91

M. Jafary-Zadeh, C.D. Reddy, Y.W. Zhang. Effect of rotational degrees of freedom on molecular mobility. J. Phys. Chem. C 117, 6800 (2013).

https://doi.org/10.1021/jp312438u

A.S. de Wijn. Internal degrees of freedom and transport of benzene on graphite. Phys. Rev. E 84, 011610 (2011).

https://doi.org/10.1103/PhysRevE.84.011610

Downloads

Published

2024-02-06

How to Cite

Naplekov, D., & Yanovsky, V. (2024). Inhomogeneity of the Ideal Gas of a Finite Number of Particles with Angular Momentum Conservation. Ukrainian Journal of Physics, 69(1), 26. https://doi.org/10.15407/ujpe69.1.26

Issue

Section

General physics