Decomposition of Electromagnetic Potentials in Partial Functions of Dispersive Electrodynamic Lines

Authors

  • A.I. Bilotserkivska Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering
  • I.M. Bondarenko Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering
  • A.V. Gritsunov Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering
  • O.Yu. Babychenko Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering
  • L.I. Sviderska Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering
  • A.V. Vasianovych Kharkiv National University of Radio Electronics, Faculty of Electronic and Biomedical Engineering

DOI:

https://doi.org/10.15407/ujpe69.6.382

Keywords:

dispersive electrodynamic system, electromagnetic potential, Fourier series, eigenfunction, partial function

Abstract

The utilization of partial functions, or oscillets, as the basis functions localized in all spatial coordinates, is proposed for the expansion of non-stationary, non-harmonic electromagnetic potentials within lengthy three-dimensional dispersive electrodynamic systems, such as electrodynamic lines (ELs). These functions are derived as linear transformations of the manifold of EL eigenfunctions, aiming to minimize the spatial extension of each oscillet. Emphasis is placed on the adoption of these new functions in electrodynamic and electronic computations, particularly in the optimization of irregular ELs found in various microwave and optical sources, including those with open-ended configurations featuring a continuous spectrum of eigenfunctions. An illustrative example showing the utility of partial functions in the electrodynamic calculation of a longitudinally inhomogeneous EL is provided.

References

R.G. Carter. Microwave and RF Vacuum Electronic Power Sources (Cambridge Univ. Press, 2018) [ISBN: 978-0-521-19862-2].

https://doi.org/10.1017/9780511979231

F.J. Dyson. The dynamics of a disordered linear chain. Phys. Rev. 92, 1331 (1953).

https://doi.org/10.1103/PhysRev.92.1331

E. Hasco¨et, H.J. Herrmann, V. Loreto. Shock propagation in a granular chain. Phys. Rev. E 59, 3202 (1999).

https://doi.org/10.1103/PhysRevE.59.3202

E. Somfai, J.-N. Roux, J.H. Snoeijer, M. van Hecke, W. van Saarloos. Elastic wave propagation in confined granular systems. Phys. Rev. E 72, 021301 (2005).

https://doi.org/10.1103/PhysRevE.72.021301

O.I. Gerasymov, N. Vandewalle, A.Ya. Spivak, N.N. Khudyntsev, G. Lumay, S. Dorbolo, O.A. Klymenkov. Stationary states in a 1D system of inelastic particles. Ukr. J. Phys. 53, 1128 (2008).

U. Harbola, A. Rosas, A.H. Romero, M. Esposito, K. Lindenberg. Pulse propagation in decorated granular chains: An analytical approach. Phys. Rev. E 80, 051302 (2009).

https://doi.org/10.1103/PhysRevE.80.051302

O.I. Gerasymov, N. Vandewalle. On the exact solutions of the problem of impulsive propagation in an inhomogeneous granular chain. Dopov. Nac. akad. nauk Ukr. 8, 67 (2012).

O.I. Gerasymov, A.Ya. Spivak. On the wave transmission in a gently perturbed weakly inhomogeneous non-linear force chain. Ukr. J. Phys. 65, 1008 (2020).

https://doi.org/10.15407/ujpe65.11.1008

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Instability of a tubular electron beam blowing around a plasma solid-state cylinder located in a strong longitudinal magnetic field. Ukr. J. Phys. 67, 255 (2022).

https://doi.org/10.1109/UkrMW58013.2022.10037143

K.S. Kunz, R.J. Luebbers. The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993) [ISBN: 978-0-367-40237-2].

S.D. Gedney. Introduction to the Finite-Difference TimeDomain (FDTD) Method for Electromagnetics (Springer Cham, 2011) [ISBN: 978-3-031-00584-8].

https://doi.org/10.2200/S00316ED1V01Y201012CEM027

J.L. Volakis, A. Chatterjee, L.C. Kempel. Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE Press, 1998) [ISBN: 978-0-780-33425-0].

https://doi.org/10.1109/9780470544655

J.-M. Jin. The Finite Element Method in Electromagnetics (Wiley-IEEE Press, 2014) [ISBN: 978-1-118-57136-1].

A. Gritsunov, I. Bondarenko, A. Pashchenko, O. Babychenko, E. Odarenko. On the quantum electrodynamics of nanophotonic systems. In: Proceedings of 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2020), Lviv-Slavske, Ukraine, February 25-29, (2020), p. 15.

https://doi.org/10.1109/TCSET49122.2020.235379

M.L. Boas. Mathematical Methods in the Physical Sciences (Wiley, 2005), [ISBN: 978-0-471-19826-0].

D.S. Moseley. Non-separable solutions of the Helmholtz wave equation. Quarterly of Applied Mathematics 22, 354 (1965).

https://doi.org/10.1090/qam/183970

D.S. Moseley. Further properties of the nonseparable solutions of the Helmholtz wave equation. Quarterly of Applied Mathematics 27, 451 (1970).

https://doi.org/10.1090/qam/255956

P. Overfelt. Symmetry operators and nonseparable solutions of the two-dimensional Helmholtz equation for electromagnetic analysis. Electromagnetics 9, 249 (1989).

https://doi.org/10.1080/02726348908915237

O.A. Tretyakov. Essentials of nonstationary and nonlinear electromagnetic field theory. Analytical and Numerical Methods in the Electromagnetic Wave Theory. Edited by M. Hashimoto, M. Idemen, O.A. Tretyakov (Science House Co., 1993).

M.S. Antyufeyeva, O.A. Tretyakov. Electromagnetic fields in a cavity filled with some nonstationary media. Progress in Electromagnetics Research B 19, 177 (2010).

https://doi.org/10.2528/PIERB09112402

A.V. Gritsunov. Methods of calculation of nonstationary nonharmonic fields in guiding electrodynamic structures. J. Comm. Technology and Electronics 52, 601 (2007).

https://doi.org/10.1134/S1064226907060010

H. Georgi. The Physics of Waves (Prentice-Hall, 1993) [ISBN: 978-0-136-65621-0].

A.V. Gritsunov. Expansion of nonstationary electromagnetic potentials into partial functions of electrodynamic system. Radioelectronics and Comm. Systems 49 (7), 6 (2006).

I. Hickman. Practical Radio-Frequency Handbook (Elsevier Sci., 2006) [ISBN: 978-0-7506-8039-4].

H. Weyl. Ausbreitung elektromagnetischer Wellen ¨uber einem ebenen Leiter. Annalen der Physik 365, 481 (1919).

https://doi.org/10.1002/andp.19193652104

A. Bilotserkivska, I. Bondarenko, A. Gritsunov, O. Babychenko, L. Sviderska, A. Vasianovych. Decomposition of EM potential in partial modes of irregular electrodynamic systems. In: Proceedings of 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, November 14-18, (2022), p. 263.

https://doi.org/10.1109/UkrMW58013.2022.10037136

Downloads

Published

2024-07-25

How to Cite

Bilotserkivska, A., Bondarenko, I., Gritsunov, A., Babychenko, O., Sviderska, L., & Vasianovych, A. (2024). Decomposition of Electromagnetic Potentials in Partial Functions of Dispersive Electrodynamic Lines. Ukrainian Journal of Physics, 69(6), 382. https://doi.org/10.15407/ujpe69.6.382

Issue

Section

General physics