Reduction of Recombination Losses in Near-Sur¬face Diffusion Emitter Layers of Photosensitive Silicon n+-p-p+ Structures

Authors

  • V.P. Kostylyov V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A.V. Sachenko V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • T.V. Slusar V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V.V. Chernenko V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.9.628

Keywords:

photosensitive silicon structure, near-surface layer, emitter, recombination losses, heat treatments, silicon dioxide layer

Abstract

When creating an n+-emitter in photosensitive structures of the n+-p-p+ type, the structure of its near-surface layer after the diffusion operation is found to be substantially damaged with increased recombination losses. The influence of additional growing-etching cycles of the silicon dioxide layer on the emitter surface when manufacturing such photosensitive silicon structures on their photoelectric and recombination characteristics is studied. It is shown that the application of such an additional treatment in the production of photosensitive silicon structures allows the recombination losses to be effectively reduced and, thereby, the photovoltaic parameters of such structures, including their spectral and threshold photosensitivities, to be significantly improved.

References

M.A. Green. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl. 17, 183 (2009).

https://doi.org/10.1002/pip.892

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cells. IEEE J. Photovolt. 4, 1433 (2014).

https://doi.org/10.1109/JPHOTOV.2014.2352151

A. Augusto, J. Karas, P. Balaji, S.G. Bowden, R.R. King. Exploring the practical efficiency limit of silicon solar cells using thin solar-grade substrates. J. Mater. Chem. A 8, 16599 (2020).

https://doi.org/10.1039/D0TA04575F

D. Yan, S.P. Phang, Y. Wan, C. Samundsett, D. Macdonald, A. Cuevas. High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion. Solar Energ. Mater. Sol. Cells 193, 80 (2019).

https://doi.org/10.1016/j.solmat.2019.01.005

T.N. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, L. Li, F. Kremer, A. Cuevas, D. Macdonald, H.T. Nguyen. Hydrogenation of phosphorus-doped polycrystalline silicon films for passivating contact solar cells. ACS Appl. Mater. Interf. 11, 5554 (2019).

https://doi.org/10.1021/acsami.8b19989

W. Chen, J. Stuckelberger, W. Wang, S.P. Phang, D. Kang, C. Samundsett, D. MacDonald, A. Cuevas, L. Zhou, Y. Wan, D. Yan. Influence of PECVD deposition power and pressure on phosphorus-doped polysilicon passivating contacts. IEEE J. Photovolt. 10, 1239 (2020).

https://doi.org/10.1109/JPHOTOV.2020.3001166

A. Richter, H. Patel, C. Reichel, J. Benick, S.W. Glunz. Improved silicon surface passivation by ALD Al2O3/SiO2 multilayers with in-situ plasma treatments. Adv. Mater. Interfaces 10, 2202469 (2023).

https://doi.org/10.1002/admi.202202469

L. Helmich, D.C. Walter, R. Falster, V.V. Voronkov, J. Schmidt. Impact of hydrogen on the boron-oxygen-related lifetime degradation and regeneration kinetics in crystalline silicon. Sol. Energ. Mater. Sol. Cells 232, 111340 (2021).

https://doi.org/10.1016/j.solmat.2021.111340

A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz. n-Type Si solar cells with passivating electron contact: Identifying sources for effciency limitations by wafer thickness and resistivity variation. Sol. Energ. Mater. Sol. Cells 173, 96 (2017).

https://doi.org/10.1016/j.solmat.2017.05.042

B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow. Characterization of surface state charge of thermally oxidized silicon. J. Electrochem. Soc. 114, 266 (1967).

https://doi.org/10.1149/1.2426565

V.G. Litovchenko, A.P. Gorban'. Fundamentals of Physics of Microelectronic Systems Metal-insulator-semiconductor (Naukova Dumka, 1978) (in Russian).

H. Dib, Z. Benamara, T. Mohammed-Brahim, H. Mazari, N. Benseddik. Influence of the thermal annealing on the MOS^P structure. Sensor Lett. 7, 765 (2009).

https://doi.org/10.1166/sl.2009.1145

K. Kayed, D.B. Kurd. The effect of annealing temperature on the structural and optical properties of Si/SiO2 composites synthesized by thermal oxidation of silicon wafers. Silicon 14, 5157 (2022).

https://doi.org/10.1007/s12633-021-01307-w

M.A. Green. Photovoltaics: Technology overview. Energ. Policy 28, 989 (2000).

https://doi.org/10.1016/S0301-4215(00)00086-0

V.P. Kostylov. Photoelectric Energy Conversion Processes in Silicon Multilayer Structures with Diffusion-Field Barriers. Doctoral dissertation (V. Lashkaryov Institute of Semiconductor Physics, 2009) (in Ukrainian).

G.C. Salter, R.E. Thomas. Silicon solar cells using natural inversion layers found in thermally oxidized p-silicon. Solid State Electron. 20, 95 (1977).

https://doi.org/10.1016/0038-1101(77)90056-9

M.A. Green, F.D. King, J. Shewchun. Minority carrier MIS tunnel diodes and their application to electron-and photovoltaic energy conversion. I. Theory. Solid-State Electron. 17, 551 (1974).

https://doi.org/10.1016/0038-1101(74)90172-5

Certificate of recognition of measuring capabilities of the Center for testing photo-conversion devices and photovoltaic arrays of the V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, No. PT-448/21, issued on November 09, 2021 by the State Enterprise "All-Ukrainian State Scientific and Production Center for Standardization, Metrology, Certification, and Consumer Rights Protection" of the Ministry of Economy of Ukraine.

M.I. Klyui, V.P. Kostylyov, A.V. Makarov, V.V. Chernenko. Metrological aspects of testing photovoltaic solar energy converters. Sklad. Syst. Protses. 1, 42 (2007) (in Ukrainian).

A.V. Sachenko, Yu.V. Kryuchenko, V.P. Kostylyov, I.O. Sokolovskyi, A. Abramov, A.V. Bobyl, I.E. Panaiotti, E.I. Terukov. Method for optimizing the parameters of heterojunction photovoltaic cells based on crystalline silicon. Semiconductors 50, 257 (2016).

https://doi.org/10.1134/S1063782616020226

A.V. Sachenko, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, A.I. Skrebtii. Simulation of the real efficiencies of high-efficiency silicon solar cells. Semiconductors 50, 523 (2016).

https://doi.org/10.1134/S1063782616040205

A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi. Features of photoconversion in highly efficient silicon solar cells. Semiconductors 49, 264 (2015).

https://doi.org/10.1134/S1063782615020189

T. Trupke, M.A. Green, P. W¨urfel, P.P. Altermatt, A. Wang, J. Zhao, R. Corkish. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 94, 4930 (2003).

https://doi.org/10.1063/1.1610231

A.P. Gorban', V.A. Zuev, V.P. Kostylyov, A.V. Sachenko, A.A. Serba, V.V. Chernenko. About the temperature dependences of the equilibrium and non-equilibrium parameters in silicon. Optoelektron. Poluprov. Tekhn. 36, 161 (2001) (in Russian).

A.V. Sachenko, V.P. Kostylyov, V.M. Vlasiuk, I.O. Sokolovskyi, M.A. Evstigneev, T.V. Slusar, V.V. Chernenko. Modeling of characteristics of highly efficient textured solar cells based on c-silicon. The influence of recombination in the space charge region. Semicond. Phys. Quant. Electron. Optoelectron. 26, 005 (2023).

A.V. Sachenko, V.P. Kostylyov, V.M. Vlasiuk, I.O. Sokolovskyi, M. Evstigneev, D.F. Dvernikov, R.M. Korkishko, V.V. Chernenko. Space charge region recombination, nonradiative exciton recombination and the band-narrowing effect in high-efficiency silicon solar cells. Semicond. Phys. Quant. Electron. Optoelectron. 26, 127 (2023).

K.D. Glinchuk, N.M. Litovchenko, Z.A. Salnik, S.I. Skryl. Effect of heat treatment on the minority carrier lifetime in oxygen-containing silicon. Phys. Status Solidi A 79, 159 (1983).

https://doi.org/10.1002/pssa.2210790253

A.P. Gorban', V.P. Kostylyov, V.V. Chernenko. Genesis of generational and charge characteristics of the Si-SiO2 system during the manufacture of KMOS GIS. Optoelektron. Poluprov. Tekhn. 24, 61 (1992) (in Russian).

D.A. Clugston, P.A. Basore. PC1D Version 5: 32-bit solar cell simulation on personal computers. In: Proceedings of the 26th IEEE Photovoltaic Specialists Conference (PVSC 1997), September 1997, Anaheim, CA, USA (IEEE, 1997), p. 207.

A.P. Gorban', V.P. Kostylyov, V.G. Litovchenko, I.B. Nikolin, A.A. Serba. The "self-gettering" effect at the formation of diffusion p-n-junctions in silicon. Mikroelektronika 22, 22 (1993) (in Russian).

A. Cuevas, D. MacDonald, M. Kerr, C. Samundsett, A. Sloan, S. Shea, A. Leo, M. Mrcarica, S. Winderbaum. Evidence of impurity gettering by industrial phosphorus diffusion. In: Proceedings of the 28 IEEE Photovoltaic Specialists Conference (PVSC 2000), Anchorage, Alaska, USA, September 15-22, 2000 (IEEE, 2000), p. 244.

R.L. Meek, T.E. Seidel. Enhanced solubility and ion pairing of Cu and Au in heavily doped silicon at high temperatures. J. Phys. Chem. Solids 36, 731 (1975).

https://doi.org/10.1016/0022-3697(75)90096-7

L. Baldi, G. Cerofolini, G. Ferla. Heavy-metal gettering in silicon-device processing. J. Electrochem. Soc. 127, 164 (1980).

https://doi.org/10.1149/1.2129609

Published

2023-10-20

How to Cite

Kostylyov, V., Sachenko, A., Slusar, T., & Chernenko, V. (2023). Reduction of Recombination Losses in Near-Sur¬face Diffusion Emitter Layers of Photosensitive Silicon n+-p-p+ Structures. Ukrainian Journal of Physics, 68(9), 628. https://doi.org/10.15407/ujpe68.9.628

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)