Effect of Calcination Temperature and Substitution of Erbium on Structural and Optical Properties of Nickel Zinc Ferrite Nanoparticles

Authors

  • K. Vijaya Kumar Department of Physics, JNTUH University College of Engineering Jagtial, Nachupally (Kondagattu)
  • S.D. Bhavani Department of Chemistry, Government Degree College Rajendranagar

DOI:

https://doi.org/10.15407/ujpe68.11.772

Keywords:

ferrite, sol-gel, calcination temperature, structural and optical properties

Abstract

A single composition of erbium-doped nickel zinc ferrite Ni0.5Zn0.5Fe1.95Er0.05O4 is synthesized by the sol-gel autocombustion process. The prepared composition was divided into five equal parts. One of the parts was an as-prepared sample, and remaining four other parts were calcinated at 600, 700, 800, and 900 C to investigate the variation in structural and optical properties with the calcination temperature. The structural characterization was performed using XRD and SEM. Optical properties were analyzed using FTIR and UV-Visible spectral data. XRD patterns confirm the spinel cubic crystal structure and the Fd3m space group. The crystallite size was minimum for the as-prepared sample (17.9452 nm), and the crystallite size was maximum for the sample calcinated at 900 C (29.8481 nm). SEM images revealed the grain size in the interval from 55.38 nm to 177.73 nm, and certain nanotubes were formed in the sample calcinated at 800 C. Optical energy band gap was observed in the interval from 5.556 eV to 3.969 eV. All these testifies to the variations in structural and optical properties of Ni0.5Zn0.5Fe1.95Er0.05O4 with the calcination temperature.

References

D.H.K. Reddy, Y.S. Yun. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification. Coord. Chem. Rev. 315, 90 (2016).

https://doi.org/10.1016/j.ccr.2016.01.012

S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad, K. Srinivasarao, C. Srinivas, K. Vijaya Babu, E. Ranjith Kumar, N. Krisha Mohan, D.L. Sastry. Synthesis of MFe2O4 (M = Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties. Ceram. Int. 44 (9), 10517 (2018).

https://doi.org/10.1016/j.ceramint.2018.03.070

W. Mokhosi, S.Mdlalose, Mngadi, M. Singh, T. Moyo. Assessing the structural, morphological and magnetic properties of polymer-coated magnesium-doped cobalt ferrite (CoFe2O4) nanoparticles for biomedical application. J. Phys. Conf. Ser. 1310, 012014 (2019).

https://doi.org/10.1088/1742-6596/1310/1/012014

S. Chakrabarty, M. Pal, A. Dutta. Yttrium doped cobalt ferrite nanoparticles: Study of dielectric relaxation and charge carrier dynamics. Ceram. Int. 44 (12), 14652 (2018).

https://doi.org/10.1016/j.ceramint.2018.05.091

G. Asab, E.A. Zereffa, T. Abdo Seghne. Synthesis of silicacoated Fe3O4 nanoparticles by microemulsion method: Characterization and evaluation of antimicrobial activity. Int. J. Biomater. 2020, 4783612 (2020).

https://doi.org/10.1155/2020/4783612

M. Anand. Hysteresis in a linear chain of magnetic nanoparticles. J. Appl. Phys. 128 (2), 023903 (2020).

https://doi.org/10.1063/5.0010217

N. Guijarro, P.Bornoz, M. Pr'evot, X. Yu, X. Zhu, M. Johnson, K. Sivula. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustain. Energy Fuels 2 (1), 103 (2018).

https://doi.org/10.1039/C7SE00448F

U. Wongpratat, T. Pannawit, K. Jessada, S. Ekaphan, M. Santi. Effects of nickel and magnesium on electrochemical performances of partial substitution in spinel ferrite. J. Alloys and Compd. 831, 154718 (2020).

https://doi.org/10.1016/j.jallcom.2020.154718

K.K. Kefeni, T.A. Msagati, T.T. Nkambule, B.B. Mamba. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 107, 110314 (2020).

https://doi.org/10.1016/j.msec.2019.110314

I. Rajendran, I. Prakash, M. Venkateswarlu, N. Satyanarayana. Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium ion battery applications. New. J. Chem. 39 (6), 4601 (2015).

https://doi.org/10.1039/C5NJ00791G

M.S.S. Adam, A.M. Hafez, M.M. Khalaf. Rare earth Ceand Nd-doped spinel nickel ferrites as effective heterogeneous catalysts in the (ep) oxidation of alkenes. J. Iran. Chem. Soc. 17 (12), 3237 (2020).

https://doi.org/10.1007/s13738-020-01983-2

K.K. Kefeni, B.B. Mamba. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustain. Mater. Technol. 23, e00140 (2020).

https://doi.org/10.1016/j.susmat.2019.e00140

S.S. Laha, D. Nanasaheb, T. Gurwinder Singh, C.I. Sathish, J. Yi, A. Dixit. Rare-earth doped iron xide nanostructures for cancer theranostics: Magnetic hyperthermia and magnetic resonance imaging. Small. 18 (11), 2104855 (2022).

https://doi.org/10.1002/smll.202104855

J. Dhumal, M. Phadatare, S.G. Deshmukh, G.S. Shahane. Enhanced heating ability of Fe-Mn-Gd ferrite nanoparticles for magnetic fluid hyperthermia. J. Mater. Sci. Mater. Electron. 31 (14), 11457 (2020).

https://doi.org/10.1007/s10854-020-03694-z

B.K. Prashant, B.S. Sandeep, P.K. Pankaj, K.M. Jadhav. induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5 (36), 23378 (2020).

https://doi.org/10.1021/acsomega.0c03332

M. Irfan Hussain, M. Xia, K. Akhtar, S.K. Sharma. Ferrite nanoparticles for biomedical applications. Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology Springer, Cham. 693, 243 (2020).

https://doi.org/10.1007/978-3-030-39923-8_7

A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade. Structural, electrical, magnetic and dielectric properties of rareearth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 35, 201 (2014).

https://doi.org/10.1016/j.jmmm.2013.11.052

G.L. Sun, J.B. Li, J.J. Sun, X.Z. Yang. The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel-zinc ferrites. J. Magn. Magn. Mater. 281 (2-3), 173 (2004).

https://doi.org/10.1016/j.jmmm.2004.04.099

N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus. Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. Condens. Matter. 6, 5707 (1994).

https://doi.org/10.1088/0953-8984/6/29/013

J. Jiang, L.C. Li, F. Xu, Y.L. Xie, preparation and magnetic properties of Zn-Cu-Cr-Sm ferrite via a rheological phase reaction method. Mater. Sci. Eng. B 137, 166 (2007).

https://doi.org/10.1016/j.mseb.2006.11.014

J. Jiang, L.C. Li, F. Xu. Structural analysis and magnetic properties of Gd-doped Li-Ni ferrites prepared using rheological phase reaction method. J. Rare Earths 25, 79 (2007).

https://doi.org/10.1016/S1002-0721(07)60049-0

C. Kumari, D. Hemant Kumar, Farhana Naaz, L. Preeti. Structural and optical properties of nanosized Co substituted Ni ferrites by coprecipitation method. Phase Transitions 93 (2), 207 (2020).

https://doi.org/10.1080/01411594.2019.1709120

S. Ravindra, J. Pranat, P. Ravi, S. Srnjay, R.S. Rana, G. Nitish. Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today: Proc. 2 (4-5), 3750 (2015).

https://doi.org/10.1016/j.matpr.2015.07.165

A. Sangeetha, K. Vijaya Kumar, G. Nanda Kumar. Effect of annealing temperature on the structural and magnetic properties of NiFe2O4 nanoferrites. Adv. Mater. Phys. Chem. 7, 19 (2017).

https://doi.org/10.4236/ampc.2017.72003

A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158 (2021).

https://doi.org/10.1016/j.jmrt.2020.12.064

K. Vijaya Kumar, A. Chandra, Shekhar Reddy, D. Ravinder. High-frequency dielectric behaviour of erbium substituted Ni-Zn ferrites. J. Magn. Magn. Mater. 263, 121 (2003).

https://doi.org/10.1016/S0304-8853(02)01544-5

Y.B. Kannan, R. Saravanan, N. Srinivasan, I. Ismail. Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles. J. Magn. Magn. Mater. 423, 217 (2017).

https://doi.org/10.1016/j.jmmm.2016.09.038

K. Vijaya Kumar, S.D. Bhavani. Impact of calcination temperature on structural and optical properties of erbiumdoped zinc ferrite nanoparticles. Ph. Transitions. 95, 770 (2022).

https://doi.org/10.1080/01411594.2022.2117622

S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh. Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252 (2017).

https://doi.org/10.1016/j.jmmm.2016.11.090

K. Vijaya Kumar, S.D. Bhavani, M.A. Shukur. The study of temperature dependent structural and elastic properties of Ni-Zn ferrite nanoparticles. Bulgarian J. Phys. 49, 179 (2022).

K. Vijaya Kumar, Sara Durga Bhavani. Influence of calcination temperature on physical and optical properties of nickel chromite nanoparticles. Science of Sintering 54, 457 (2022).

https://doi.org/10.2298/SOS2204457K

S. Fouzar, T. Eftimov, I. Kostova, A. Benmounah, A. Lakhssassi. Effects of temperature on the time responses of strontium aluminates. Opt. Mater. 122, 111619 (2021).

https://doi.org/10.1016/j.optmat.2021.111619

M. Atif, S.K. Hasanain, M. Nadeem. Magnetization of sol- gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size. Solid State Commun. 138, 416 (2006).

https://doi.org/10.1016/j.ssc.2006.03.023

G. Li, X. Zhu, W. Song, Z. Yang, J. Dai, Y. Sun, Y. Fu. Annealing effects on semitransparent and ferromagnetic ZnFe2O4 nanostructured films by sol-gel. J. Am. Ceram. Soc. 94, 2872 (2011).

https://doi.org/10.1111/j.1551-2916.2011.04452.x

J. Tariq, Al-Musawi, M. Nezamaddin, T. Mahmoud, S. Zaccheus, B. Davoud. Capability of copper-nickel ferrite nanoparticles loaded onto multiwalled carbon nanotubes to degrade acid blue 113 dye in the sonophotocatalytic treatment process. Env. Sci. Poll. Res. 29, 51703 (2022).

https://doi.org/10.1007/s11356-022-19460-z

A. Gadkari, A. Shinde, T. Vasambekar. Influence of rare-earth ions on structural and magnetic properties of CdFe2O4 ferrites. Rare Metals 29, 168 (2010).

https://doi.org/10.1007/s12598-010-0029-z

B.M.A. Ahmed, S.T. Bishay, S.I. El-dek, G. Omar. Effect of Ni substitution on the structural and transport properties of NixMn0.8−xMg0.2Fe2O4; 0.0 ≤ x ≤ 0.40 ferrite. J. Alloys Compd. 509, 805 (2011).

https://doi.org/10.1016/j.jallcom.2010.09.095

M.E. Gouda, W.A.A. Bayoumy. Structural, optical and magnetic properties of Ni aluminates with Co substitution. Int. J. Sci. Eng. Res. 6, 328 (2015).

Y. Slimani, H. G¨ungune¸s, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. S¨ozeri, S.E. Shirsath, I. Ercan, A. Baykal. Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co substitution. Ceram. Int. 44, 14242 (2018).

https://doi.org/10.1016/j.ceramint.2018.05.028

D.K. Dinkar, B. Das, R. Gopalan, B.S. Dehiya. Magnetic and optical properties of green synthesized nickel ferrite nanoparticles and its applications into photocatalysis. Nanotech. 32, 505725 (2021).

https://doi.org/10.1088/1361-6528/ac24c2

H.M. Pathan, J.D. Desai, C.D. Lokhande. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci. 202, 47 (2002).

https://doi.org/10.1016/S0169-4332(02)00843-7

M. Srivastava, A.K. Ojha, S.Chaubey, A. Materny. Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd. 48, 515 (2009).

https://doi.org/10.1016/j.jallcom.2009.03.027

S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Hang, H. Deng. Effects of post-thermal annealing on the optical constants of ZnO thin films. J. Alloys Compd. 448, 21 (2008).

https://doi.org/10.1016/j.jallcom.2006.10.076

K.V. Kumar. Tunable optical bandgap of gadolinium substituted nickel-zinc ferrite nanoparticles-effect of calcination temperature on its optical parameters. Adv. Mater. Phy. Chem. 12, 33 (2022).

https://doi.org/10.4236/ampc.2022.123003

A. Ashour, N. El-Kadry, S.A. Mahmoud. On the electrical and optical properties of cds films thermally deposited by a modified source. Thin Solid Films 269, 117 (1995).

https://doi.org/10.1016/0040-6090(95)06868-6

M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene, A. Kareiva. Processing and characterization of sol-gel fabricated mixed metal aluminates. Ceram. Int. 31, 1123 (2005).

https://doi.org/10.1016/j.ceramint.2004.11.012

P. Marzive, N. Marzieh, D. Zahra, M. Rasoul, G.H.H. Khorrami. Optical and dielectrical properties of nickel ferrite nanoparticles under different synthesized temperature. Results Phys. 7, 3619 (2017).

https://doi.org/10.1016/j.rinp.2017.09.049

Downloads

Published

2023-12-18

How to Cite

Vijaya Kumar, K., & Bhavani, S. (2023). Effect of Calcination Temperature and Substitution of Erbium on Structural and Optical Properties of Nickel Zinc Ferrite Nanoparticles. Ukrainian Journal of Physics, 68(11), 772. https://doi.org/10.15407/ujpe68.11.772

Issue

Section

Structure of materials