Evaporation of Droplets of Binary Mixtures of Lower Monohydric Alcohols in Heated Air


  • O.K. Kopiyka Odesa I.I. Mechnikov National University
  • V.V. Kalinchak Odesa I.I. Mechnikov National University
  • A.S. Chernenko Odesa I.I. Mechnikov National University




evaporation, alcohols, solution, droplet, thermocouple


The results obtained while studying the evaporation process of single droplets of lower alcohols – ethanol, butanol, and their binary mixtures – with initial droplet sizes of 1.5–2.5 mm in heated air at the atmospheric pressure are reported. It is shown that the second inflection points in the time dependences of the temperature and the squared droplet diameter allow the evaporation time interval to be divided into two stages: 1) the simultaneous evaporation of both alcohols with a higher content of the more volatile alcohol and 2) the evaporation of the less volatile alcohol. The application of a thermocouple, which was heated in the oven under experimental conditions, diminished the droplet evaporation time and increased the stationary temperature of the droplet evaporation. At air temperatures higher than the boiling point of the liquid fuel, the temperature difference between the gaseous medium and the evaporating droplet surface depended linearly on the gaseous environment temperature. We propose a formula for calculating the evaporation temperature for a droplet of a binary solution in heated air, which allows estimating the temperature at which the quasi-stationary evaporation of the droplet begins provided a low rate of temperature growth. In the calculations, temperature dependence of the specific vaporization heats and the difference of the Lewis number from unit. The emphasis is made on the necessity of taking the Stefan flow into account when performing the physical and mathematical simulations.


Chan Ho Jeong, Hyung Ju Lee, Chang Kyoung Choi, Seong Hyuk Lee. Review of the binary mixture droplet evaporation studies. J. Mech. Sci. Technol. 35, 12 (2021).


D. Brutin, V. Starov. Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558 (2018).


P. Gurrala, S. Balusamy, S. Banerjee, K.C. Sahu. A review on the evaporation dynamics of sessile drops of binary mixtures: challenges and opportunities. Fluid Dynam. Mater. Process. 17, 253 (2021).


M. Sharma, S.S. Mondal, P.K. Roy, K. Khare. Evaporation dynamics of pure and binary mixture drops on dry and lubricant coated slippery surfaces. J. Colloid Interf. Sci. 569, 244 (2020).


P. Chen, M. Toubal, J. Carlier, S. Harmand, B. Nongaillard, M. Bigerelle. Binary sessile drops evaporation: IR and acoustic methods for alcohol concentration tracking at the interface and the surface. Langmuir 32, 9836 (2016).


T. Ozturk, H.Y. Erbil. Simple model for diffusion-limited droplet evaporation of binary liquids from physical properties of the components: ethanol-water example. Langmuir 36, 1357 (2020).


K. Sefiane, S. David, M.E.R. Shanahan. Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112, 11317 (2008).


P. Gurrala, P. Katre, S. Balusamy, S. Banerjee, K.C. Sahu. Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature. Int. J. Heat Mass Transf. 145, 118770 (2019).


A.A. Pahlavan, L. Yang, C.D. Bain, H.A. Stone. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127, 024501 (2021).


E.L. Talbot, H.N. Yow, L. Yang, A. Berson, S.R. Biggs, C.D. Bain. Printing small dots from large drops. ACS Appl. Mater. Inter. 7, 3782 (2015).


L. Urruty, M. Montury. Extraction in aqueous solutions by solid-phase microextraction. J. Agric. Food Chem. 44, 3871 (1996).


L. Bahmani, M. Neysari, M. Maleki. The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns. Colloid. Surface. A 513, 66 (2017).


G. Strotos, I. Malgarinos, N. Nikolopoulos, M. Gavaises. Predicting the evaporation rate of stationary droplets with the VOF methodology for a wide range of ambient temperature conditions. Int. J. Therm. Sci. 109, 253 (2016).


L.A. Bulavin, G.M. Verbinska, A.V. Brytan, Ya.O. Stepowyi. Model for evaporation of droplets of ideal alcohol solutions in diffusive and transient regimes. Ukr. J. Phys. 67, 592 (2022).


O.V. Korobko, A.M. Brytan, G.M. Verbinska, D.A. Gavryushenko. Effect of ultraviolet radiation on evaporation of suspended alcohol droplets. Ukr. J. Phys. 60, 318 (2019).


V. S. Savenko, G.M. Verbinska, L.A. Bulavin. Computer simulation of evaporation process of NaCl aqueous solution. Ukr. J. Phys. 61, 812 (2019).


S. Sazhin. Droplets and Sprays (Springer Verlag, 2014).


A.K. Agarwal. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33, 233 (2007).


Q.S. Khan, S.W. Baek. Effects of high ambient pressure and temperature on the autoignition of blended fuel droplets. In: International Conference on Energy and Environment 2006 (ICEE, 2006), p. 56.

D. Segawa, T. Kadota, R. Kohama, H. Enomoto. Ignition of binary mixture droplets by a propagating laminar flame. Proc. Combust Inst. 28, 961 (2000).


R.S. Volkov, G.V. Kuznetsov, V.E. Nakoryakov, P.A. Strizhak. Experimental estimation of evaporation rates of water droplets in high-temperature gases. J. Appl. Mech. Tech. Phys. 58, 889 (2017).


T. Kitano, J. Nishio, R. Kurose, S. Komori. Evaporation and combustion of multicomponent fuel droplets. Fuel 136, 219 (2014).


T. Harada, H. Watanabe, Y. Suzuki, H. Kamata, Y. Matsushita, H. Aoki, T. Miura. A numerical investigation of evaporation characteristics of a fuel droplet suspended from a thermocouple. Int. J. Heat Mass Transf. 54, 649 (2011).


O.V. Vysokomornaya, G.V. Kuznetsov, P.A. Strizhak. Evaporation of water droplets in a high-temperature gaseous medium. J. Eng. Phys. Thermophys. 89, 141 (2016).


D. Fredrich, A. Giusti. Numerical investigation of multicomponent droplet evaporation and autoignition for aeroengine applications. Combust Flame 241, 112023 (2022).


S.M. Frolov, F.S. Frolov, 420. Basara. Simple model of transient droplet vaporization. J. Russ. Laser Res. 27, 562 (2006).


I. Veza, M.F.M. Said, Z.A. Latiff. Progress of acetonebutanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Process. Technol. 196, 106179 (2019).


N. Yilmaz, E. Ileri, A. Atmanli. Performance of biodiesel/higher alcohols blends in a diesel engine. Int. J. Energ. Res. 40, 1134 (2016).


O.S. Chernenko, V.V. Kalinchak, D.S. Darakov, O.K. Kopeck. The effect of suspension on the kinetics of evaporation of a droplet of liquid fuel. Phys. Aerosol Syst. 52, 47 (2015).

K.M. Watson. Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398 (1943).


A.N. Baratov, A.Ya. Korolchenko, G.N. Kravchuk. Fire and Explosion Hazard of Substances and Materials, and Relevant Suppressants (Khimiya, 1990) (in Russian).

D. R. Lide. CRC Handbook of Chemistry and Physics. 85th Edition. Vol. 85. (CRC Press, Jun 29, 2004).

A. Vinogradov, O. Yakhno. Effect of droplets convective heating and their evaporation on the shielding properties of fire-fighting water curtain. Visn. NTUU KPI Ser. Mashynobud. No. 2, 55 (2016) (in Russian).




How to Cite

Kopiyka, O., Kalinchak, V., & Chernenko, A. (2023). Evaporation of Droplets of Binary Mixtures of Lower Monohydric Alcohols in Heated Air. Ukrainian Journal of Physics, 68(10), 660. https://doi.org/10.15407/ujpe68.10.660



General physics