Temperature and Concentration Dependences of the Zeta Potential of Albumin Macromolecules in the Aqueous-Salt Solution

Authors

  • O.D. Stoliaryk Odesa I.I. Mechnikov National University
  • A.A. Guslisty Family Medicine Center Amedika LLC
  • O.V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University

DOI:

https://doi.org/10.15407/ujpe68.11.742

Keywords:

aqueous solution, albumin, sodium chloride, zeta potential, pH, cellular model

Abstract

Using the cellular model, the dependences of the zeta potential of human serum albumin on the salt concentration in aqueous NaCl solutions have been obtained for two temperatures, 300 and 318 K, and two values of albumin radius, 40 and 45 Å. It is found that the temperature variation within the considered interval does not significantly affect the examined parameter. An increase of the molecular radius by 5 Å leads to a noticeable reduction of the zeta potential from 3 to 10 units depending on the salt concentration. The obtained data can serve as a basis for interpreting the values of the albumin zeta potential under various pathological conditions.

References

V.W. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennelly, P.A. Weil. Harper's Illustrated Biochemistry (McGraw Hill, 2018).

I.V. Savitsky. Biological Chemistry (Vyshcha Shkola, 1982) (in Russian).

E.M. Trukhan. Introduction to Biophysics (MFTI, 2008) (in Russian) [ISBN: 9785741702406].

R.G. Bates. Determination of pH: Theory and Practice (John Wiley and Sons, 1964) [ISBN: 9780471056461].

V. Bardik, A.I. Fisenko, S. Magaz'u, N.P. Malomuzh. The crucial role of water in the formation of the physiological temperature range for warm-blooded organisms. J. Mol. Liq. 306, 112818 (2020).

https://doi.org/10.1016/j.molliq.2020.112818

N. Atamas, V. Bardik, A. Bannikova, O. Grishina, E. Lugovskoi, S. Lavoryk, Y. Makogonenko, V. Korolovych, D. Nerukh, V. Paschenko. The effect of water dynamics on conformation changes of albumin in pre-denaturation state: photon correlation spectroscopy and simulation. J. Mol. Liq. 235, 17 (2017).

https://doi.org/10.1016/j.molliq.2017.01.017

N. Atamas, V. Bardik, S. Komisarenko, Y. Makogonenko, E. Lugovskoi, N. Malomuzh, D. Nerukh, P. Solonin. Water dynamics and stability of major blood proteins at predenaturation stage. Atti Accad. Pelor. Peric. 97 (S2), A16 (2019).

N.O. Mchedlov-Petrosyan, Yu.E. Zevatsky, D.V. Samoilov. Physical Chemistry. Acid-Base Equilibria In Aqueous Solutions (St. Petersburg, 2018) (in Russian) [ISBN: 978-5-7937-1496-9].

N.O. Mchedlov-Petrosyan, L.P. Loginova, V.N. Kleshchevnikova. Influence of salts on the ionization of indicators in the Stern layer of cationic micelles. Zh. Fiz. Khim. 67, 1649 (1993) (in Russian).

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, O.I. Ivankov, A.Y. Vul', A.T. Dideikin, M.V. Avdeev. Small-angle scattering from polydisperse particles with a diffusive surface. J. Appl. Crystallogr. 47, 642 (2014).

https://doi.org/10.1107/S1600576714001216

E.A. Kyzyma, A.A. Tomchuk, L.A. Bulavin, V.I. Petrenko, L. Alm'asy, M.V. Korobov, D.S. Volkov, I.V. Mikheev, I.V. Koshlan, N.A. Koshlan, P. Bl'aha, M.V. Avdeev, V.L. Aksenov. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Invest. X-ray 9, 1 (2015).

https://doi.org/10.1134/S1027451015010127

V.I. Petrenko, O.P. Artykulnyi, L.A. Bulavin, L. Alm'asy, V.M. Garamus, O.I. Ivankov, N.A. Grigoryeva, L. Vekas, P. Kopcansky, M.V. Avdeev. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloid, Surface. A 541, 222 (2018).

https://doi.org/10.1016/j.colsurfa.2017.03.054

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

S.S. Dukhin. Electrical Conductivity And Electrokinetic Properties Of Dispersed Systems (Naukova Dumka, 1975) (in Russian).

K.V. Fedorova. Optical Properties of Protein and Enzyme Macromolecules in Aqueous Solutions Containing Met al Ions. PhD thesis (Moscow, 2016) (in Russian).

P. Debye. Selected Works (Nauka, 1987) (in Russian).

L.D. Landau and E.M. Lifshits, Statistical Physics, Part 1 (Pergamon Press, 1980).

https://doi.org/10.1016/B978-0-08-057046-4.50008-7

V.I. Marenkov, M.N. Chesnokov. Physical Models of Plasma with a Condensed Dispersed Phase (UMK VO, 1989) (in Russian).

V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. Dusty plasmas. Physics-Usp. 47, 447 (2004).

https://doi.org/10.1070/PU2004v047n05ABEH001689

B. Jachimska, M. Wasilewska, Z. Adamczyk. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 24, 6866 (2008).

https://doi.org/10.1021/la800548p

V. Souza, A. Pires Ordine, I.C.S. Fraga, M.A. Getrouw, P.P. Borges, J.C. Damasceno, P.R.G. Couto. Effect of NaCl and HCl concentrations on primary pH measurement for the certification of standard materials. Braz. Arch. Biol. Technol. 49 (Special), 79 (2006).

https://doi.org/10.1590/S1516-89132006000200013

N. Fogh-Andersen, P.J. Bjerrum, O. Siggaard-Andersen. Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clinic. Chem. 39, 48 (1993).

https://doi.org/10.1093/clinchem/39.1.48

J.C. Bosma, J.A. Wesselingh. pH dependence of ionexchange equilibrium of proteins. AIChE J. 44, 2399 (1998).

https://doi.org/10.1002/aic.690441108

M. Mapiour, A. Abdelrasoul. Critical influences of plasma pH on human protein properties for modeling considerations: Size, charge, conformation, hydrophobicity, and denaturation. J. Compos. Sci. 7, 28 (2023).

https://doi.org/10.3390/jcs7010028

K. Baler, O.A. Martin, M.A. Carignano, G.A. Ameer, J.A. Vila, I. Szleifer. Electrostatic unfolding and interactions of albumin driven by pH changes: A molecular dynamics study. J. Phys. Chem. B 118, 921 (2014).

https://doi.org/10.1021/jp409936v

O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr J. Phys. 64, 287 (2019).

https://doi.org/10.15407/ujpe64.4.287

O.V. Khorolskyi, Y.D. Moskalenko. Calculation of the macromolecular size of bovine serum albumin from the viscosity of its aqueous solutions. Ukr. J. Phys. 65, 41 (2020).

https://doi.org/10.15407/ujpe65.1.41

Published

2023-12-18

How to Cite

Stoliaryk, O., Guslisty, A., & Khorolskyi, O. (2023). Temperature and Concentration Dependences of the Zeta Potential of Albumin Macromolecules in the Aqueous-Salt Solution. Ukrainian Journal of Physics, 68(11), 742. https://doi.org/10.15407/ujpe68.11.742

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics