Control over Laser Beam Intensities in Liquid Crystal Valves When Recording Dynamic Volume Gratings

Authors

  • V. Mystetskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • S. Bugaychuk Institute of Physics, Nat. Acad. of Sci. of Ukraine, Facult´e de Physique, Laboratoire PhLAM, l’Universit´e de Lille

DOI:

https://doi.org/10.15407/ujpe68.7.474

Keywords:

nematic liquid crystals, two-wave mixing, dynamic gratings, diffraction efficiency

Abstract

Experimental studies of dynamic holography in pure nematic liquid crystals (NLCs) confirm the recording of dynamic gratings not only in NLC cells with homeotropic orientation, but also in planar ones. The explanation can be found on the basis of the photorefractive mechanism of grating recording, which is characterized by the formation of an unbalanced charge at the cell substrate surface under the action of spatially inhomogeneous light beams. The emergence of an internal tangential electric field (along the cell substrate) together with an external electric field applied normally to the cell substrates makes it possible to control the direction of the net electric field vector. In this paper, a model describing how the intensities of laser beams change at their self-diffraction and diffraction at a dynamic grating generated in the NLC has been developed and analyzed. The dynamic phase grating appears due to the orientation mechanism of birefringence in the NLC at the mixing of two laser beams that form a spatially periodic interference pattern of the acting light field. The results of calculations of the output laser beam intensities in the first self-diffraction and diffraction orders are in good agreement with experimental data. In particular, they explain a well-pronounced maximum in the dependence of the diffraction efficiency on the external applied voltage.

References

J.C. Jones. Liquid Crystal Displays (Taylor and Francis Group, 2018).

Iam-Choon Khoo, Liquid Crystals (John Wiley and Sons, 2022).

https://doi.org/10.1002/9781119705819

L.M. Blinov. Structure and Properties of Liquid Crystals (Springer, 2011).

https://doi.org/10.1007/978-90-481-8829-1

A. Lininger, A.Y. Zhu, J.-S. Park, G. Palermo, S. Chatterjee, J. Boyd, F. Capasso, G. Strangi. Optical properties of metasurfaces infiltrated with liquid crystals. Proc. Natl. Acad. Sci. USA 25, 20390 (2020).

https://doi.org/10.1073/pnas.2006336117

G. Klimusheva, S. Bugaychuk, Yu. Garbovskiy, O. Kolesnyk, T. Mirnaya, A. Ishchenko. Fast dynamic holographic recording based on conductive ionic metal-alkanoate liquid crystals and smectic glasses. Opt. Lett. 31, 235 (2006).

https://doi.org/10.1364/OL.31.000235

Fengfeng Yao, Rongqu Hong, Yunpen Gao, Zhaoheng Wang, Yanbo Pei, Chunfeng Hou et al. Dynamic holographic liquid crystal device containing nanoscale CuPc film. Liq. Cryst. 46, 1108, (2019).

https://doi.org/10.1080/02678292.2018.1556820

S. Residori, U. Bortolozzo, J.P. Huignard. Liquid crystal light valves as optically addressed liquid crystal spatial light modulators: optical wave mixing and sensing applications. Liq. Cryst. Rev. 6, 1 (2018).

https://doi.org/10.1080/21680396.2018.1496041

J. Parka, T. Grudniewski, Yu. Kurioz, R. Dabrowski. Optically addressed holographic gratings in LC cells with different layers and high optical anisotropy liquid crystals. Opto-Electron. Rev. 12, 317 (2004).

S.B. Abbott, K.R. Daly, G. D'Alessandro, M. Kaczmarek, D.C. Smith. Hybrid liquid crystal protorefractive system for the photorefractive coupling of surface plasmon polaritons. J. Opt. Soc. Am. B 29, 1947 (2012).

https://doi.org/10.1364/JOSAB.29.001947

U. Bortolozzo, S. Residori, J.P. Huignard. Beam coupling in photorefractive liquid crystal light valves. J. Phys. D 41, 224007 (2008).

https://doi.org/10.1088/0022-3727/41/22/224007

D. Psaltis, D. Brady, XG. Gu, S. Lin. Holograpphy in artificial neural networks. Nature 343, 325 (1990).

https://doi.org/10.1038/343325a0

F. Laporte, J. Dambre, P. Bienstman. Simulating self-learning in photorefractive optical reservoir computers. Sci. Rep. 11, 2701 (2021).

https://doi.org/10.1038/s41598-021-81899-w

J. Frejlich. Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization (Wiley-Interscience Publication, 2007).

https://doi.org/10.1002/0470089067

F. Simoni, L. Lucchetti. Photorefractive Effects in Liquid Crystals. in Photorefractive Materials and Their Applications 2. Edited by P. G¨unter, J.-P. Huignard (Springer, 2007), p. 571.

https://doi.org/10.1007/0-387-34081-5_16

P. Korneychuk, O. Tereshchenko, Yu. Reznikov, V. Reshetnyak, K. Singer. Hidden surface photorefractive gratings in a nematic liquid crystal cell in the absence of a deposited alignment layer. J. Opt. Soc. Am. B 23, 1007 (2006).

https://doi.org/10.1364/JOSAB.23.001007

Y.J. Liu, X.W. Sun. Holographic polymer-dispersed liquid crystals: materials, formation, and applications. Adv. Optoelectron. 2008, 684349 (2008).

https://doi.org/10.1155/2008/684349

R.L. Sutherland, B. Hagan, W.J. Kelly, B. Epling. Switchable polymer-dispersed liquid crystal optical elements. US Patent No. US007265903B2, Sep. 4, 2007.

S. Bugaychuk, A. Iljin, O. Lytvynenko, L. Tarakhan, L. Karachevtseva. Enhanced nonlinear optical effect in hybrid liquid crystal cells based on photonic crystal. Nanosc. Res. Lett. 12, 1 (2017).

https://doi.org/10.1186/s11671-017-2217-3

S. Bugaychuk, L. Viduta, A. Gridyakina, H. Bordyuh, V. Styopkin, L. Tarakhan, V. Nechytaylo. Faster nonlinear optical response in liquid crystal cells containing gold nano-island films. Appl. Nanosci. 10, 4965 (2020).

https://doi.org/10.1007/s13204-020-01384-0

S. Bugaychuk, L. Viduta, L. Tarakhan, V. Cherepanov, A. Gridyakina, H. Bordyuh, A. Iljin, V. Nechytaylo. Optical linear and nonlinear properties of hybrid liquid crystal cells containing gold island films. Mol. Cryst. Liq. Cryst. 696, 93 (2020).

https://doi.org/10.1080/15421406.2020.1731096

S. Bugaychuk, S. Kredentser, Y. Kurioz, A. Gridyakina, H. Bordyuh, L. Viduta, V. Styopkin, D. Zhulai. Recording of dynamic and permanent gratings in composite LC cells containing gold nano-island films. Mol. Cryst. Liq. Cryst. 750, 23 (2023).

https://doi.org/10.1080/15421406.2022.2073033

Yu. Kurioz, S. Bugaychuk, S. Kredentser, H. Bordyuh, A. Gridyakina, V. Styopkin, L. Viduta. Effect asymmetry of diffraction efficiency in LC cells with different command surfaces. Mol. Cryst. Liq. Cryst. 748, 29 (2022).

https://doi.org/10.1080/15421406.2022.2067658

A.S. Sonin. Introduction to the Liquid Crystal Physics (Nauka, 1983) (in Russian).

P.G. De Gennes, J. Prost The Physics of Liquid Crystals (Oxford University Press, 1993).

S. Bugaychuk, V. Mystetskyi. Kinetics of dynamic refractive index gratings in nematic liquid crystals in spatially inhomogeneous electric fields. Mol. Cryst. Liq. Cryst. 747, 64 (2022).

https://doi.org/10.1080/15421406.2022.2066793

Published

2023-09-08

How to Cite

Mystetskyi, V., & Bugaychuk, S. (2023). Control over Laser Beam Intensities in Liquid Crystal Valves When Recording Dynamic Volume Gratings. Ukrainian Journal of Physics, 68(7), 474. https://doi.org/10.15407/ujpe68.7.474

Issue

Section

Liquid crystals and polymers