Magnetogenesis in Non-Local Models during Inflation




magnetogenesis, non-local models


The generation of magnetic fields during the inflation in an electromagnetic model with a non-local form factor in Maxwell’s action is studied. The equations of motion for the electromagnetic field are derived and solved. It is found that the conformal symmetry breaking due to the non-local form factor does not lead to the generation of magnetic fields during the inflation in the absence of an interaction with the inflaton field. If such a coupling takes place, then the presence of the form factor inhibits the generation of primordial magnetic fields compared to the case where the non-local form factor is absent.


Yu.V. Kuz'min. The convergent nonlocal gravitation. Sov. J. Nucl. Phys. 50, 1011 (1989).

L. Modesto. Super-renormalizable quantum gravity. Phys. Rev. D 86, 044005 (2012).

E.T. Tomboulis. arXiv:hep-th/9702146.

A.S. Koshelev, K.S. Kumar, A.A. Starobinsky. Analytic infinite derivative gravity, R2-like inflation, quantum gravity and CMB. Int. J. Mod. Phys. D 29, 2043018 (2020).

S. Capozziello, F. Bajardi. Nonlocal gravity cosmology: An overview. Int. J. Mod. Phys. D 31, 2230009 (2022).

M. Ostrogradsky. M'emoires sur les 'equations diff'erentielles, relatives au probl'eme des isop'rim'etres. Mem. Ac. St. Petersbourg 4, 385 (1850).

E. Witten. Non-commutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986).

T. Biswas, A. Mazumdar, W. Siegel. Bouncing universes in string-inspired gravity. JCAP 0603, 009 (2006).

T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar. Towards singularity- and ghost-free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012).

A. Barvinsky, Yu. Gusev, G. Vilkovisky, V. Zhytnikov. The one-loop effective action and trace anomaly in four dimensions. Nucl. Phys. B 439, 561 (1995).

T. Propopec, R.P. Woodard. Vacuum polarization and photon mass in inflation . Am. J. Phys. 72, 60 (2004).

A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010).

F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, P. Coppi. The intergalactic magnetic field constrained by Fermi/Large area telescope observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010).

A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeVпїЅTeV observations of blazars. Astron. Astrophys. 529, A144 (2011).

C.D. Dermer, M. Cavadini, S. Razzaque, J.D. Finke, J. Chiang, B. Lott. Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field. Astrophys. J. Lett. 733, L21 (2011).

C. Caprini, S. Gabici. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015).

L. Parker. Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968).

M.S. Turner, L.M. Widrow. Inflation produced, large scale magnetic fields. Phys. Rev. D 37, 2743 (1988).

B. Ratra. Cosmological "Seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992).

W.D. Garretson, G.B. Field, S.M. Carroll. Primordial magnetic fields from pseudo Goldstone bosons. Phys. Rev. D 46, 5346 (1992).

A.D. Dolgov. Breaking of conformal invariance and electromagnetic field generation in the Universe. Phys. Rev. D 48, 2499 (1993).

A. Zee. Einstein gravity in a nutshell (Princeton University Press, 2013).




How to Cite

Gorbar, E., Gorkavenko, T., Gorkavenko, V., & Teslyk, O. (2023). Magnetogenesis in Non-Local Models during Inflation. Ukrainian Journal of Physics, 68(10), 647.



Fields and elementary particles