Physical Aspects of 2014 Nobel Prize in Physiology or Medicine: 2. The First Principle and Universality Class for Grid Cells in the Brain


  • A.V. Chalyi Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University
  • K.A. Chalyi Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University
  • E.V. Zaitseva Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University
  • E.N. Chaika Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University
  • I.P. Kryvenko Department of Medical and Biological Physics and Informatics, Bogomolets National Medical University



first principle, universality class, grid cells, hexagons in human brain, conformal invariance hypothesis, Ginzburg–Landau Hamiltonian


The main purpose of this review article is to use the fluctuation theory of phase transitions for studying the process of the emergence of hexagonal grid cells in the brain (2014 Nobel Prize in Physiology or Medicine). Particular attention is paid to the application of the Feynman’s classification of three stages of the study of natural phenomena for: 1) a brief description of the experimental stage of the discovery of the hexagonal structures of grid cells in human and animal brains; 2) the theoretical stage of research on the hexagon formation in the physical system of Benard cells, as well as the neurophysiological system of grid cells, discovered by Edward Mozer and May-Britt Mozer; 3) the most important stage, which allows one to formulate the first principle of the emergence of grid cells in the brain and, generally speaking, the first principle for the hexagon formation in different objects of inanimate and living nature. Our original theoretical findings are the following: (a) Polyakov’s conformal invariance hypothesis is violated for a system of grid cells in the brain; (b) the system of grid cells in the brain belongs to the universality class including the 3D Ising model in a magnetic field, as well as a real classical liquid-vapor system;(c) to formulate the first principle for a reliable theoretical justification of the emergence of hexagonal grid cells in the brain, it is necessary to use the fluctuating part of Gibbs thermodynamic potential (the Ginzburg–Landau Hamiltonian) for a system with chemical (biochemical) reactions.


A.V. Chalyi, K.A. Chalyy, E.V. Zaitseva, A.A. Kryshtopa. Feynman's classification of natural phenomena and physical aspects of 2014 Nobel prize in physiology and medicine. Ukr. J. Phys. 67, 736 (2022).

A.V. Chalyi. Synergetic dialogue "physics-medicine": Hexagones in living and inanimate nature. J. Mol. Liq. 329, 114249 (2021).

T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, E.I. Moser. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801 (2005).

J. O'Keefe. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78 (1976).

The Nobel Prize in Physiology or Medicine 2014 to J.O'Keefe, M.-B. Moser, E.I. Moser. Nobel Prize Outreach AB 2023 [URL:].

J. Eccles, A.L. Hodgkin, A.F. Huxley. Nobel Lectures, Physiology or Medicine (Elsevier Publishing Company, 1972).

A.A. Abrikosov, V.L. Ginzburg, A.J. Leggett. The Nobel Prize in Physics 2003. [URL:].

A.A. Abrikosov. On the magnetic properties of superconductors of the second group. J. Exp. Theor. Phys. 5, 1174 (1957).

H. Benard. Les tourbillans cellulaires dans une nappe liquide. Revue Generale des Sciences, Pares et Appliquees 11, 1261 (1900).

Lord Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science 32, 529 (1916).

C. Marangoni. On the Expansion of a Droplet of a Liquid Floating on the Surface of Another Liquid (Fratelli Fusi, 1869).

J.W. Gibbs. On the equilibrium of heterogeneous substances. Part II. Transactions of the Connecticut Academy of Arts and Sciences 3, 343 (1878).

S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability (Clarendon, 1961) [ISBN: 978-0198512370].

L.D. Landau, E.M. Lifshits. Fluid Mechanics. 2nd edition (Elsevier, 2012).

W. Ebeling. Struturbildung bei irreversible Prozessen. Einf¨uhrung in die Theorie dissipativer Strukturen (TeubnerVerlag, 1976).

J. Jacobs, C.T. Weidemann, J.F. Miller et al. Direct recording of grid-like neuronal activity in human spatial navigation. Nat. Neorosci. 16, 1188 (2013).

L. Kunz, T.N. Schroder, H. Lee, et al. Reduced grid-celllike representations in adults at genetic risk for Alzheimer's disease. Science 350, 430 (2015).

A.V. Chalyi, A.G. Lebed. Non-Homogeneous Liquids near the Critical Point and the Boundary of Stability and Theory of Percolation in Ceramics (Harwood Acad. Publ., 1993) [ISBN: 3718652196].

A.V. Chalyi, I.V. Nezhinskii, V.M. Sysoev. The fluctuation mechanism of the formation of spatio-temporal structures in chemically active systems. In: Proceedings of II International Workshop on Nonlinear and Turbulent Processes in Physics (Gordon and Breach, 1984).

A.V. Chalyi, Ya.V. Tsekhmister, K.A. Chalyy. Ordering and Self-Organization Processes in Fluctuation Models of Open Systems (Bogomolets National Medical University, 2001).

G. Nicolis, I. Prigogine. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, 1977) [ISBN: 978-0471024019].

V.L. Ginzburg, L.D. Landau. On the theory of superconductivity. J. Exp. Theor. Phys. 20, 1064 (1950).

K.G. Wilson, J. Kogut. Renormalization group and ε-expansion. Phys. Rep. C 12, 75 (1974).

M.E. Fisher. The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974).

B. Lev, A. Zagorodny. Applications of Field Theory Methods in Statistical Physics of Nonequilibrium Systems (World Scientific, 2021) [ISBN: 978-9811229978].

Bogolyubov Institute for Theoretical Physics, NAS of Ukraine1966-2016. Edited by A.G. Zagorodniy (Akademperiodika, 2015) [ISBN: 978-966-360-301-8].

I.M. Mryglod, V.V. Ignatyuk, Yu.V. Golovach. Mykola Bogolyubov and Ukraine, Series: Library "World of Physics" (Eurosvit, 2009).

I.R.Yukhnovsky. Phase Transitions of the Second Order. Method of Collective Variables (Naukova Dumka, 1984).

I.R.Yukhnovsky, M.P. Kozlovsky, I.V. Pilyuk. Microscopic Theory of Phase Transiyions in Three-Dimensional Systems (Eurosvit, 2001).

M.P. Kozlovsky. Influence of an External Field into the Critical Behavior of Three-Dimensional Systems (Galician Druker, 2012).

Order, Disorder and Criticality. Vol. 6. Adanced Problems of Phase Transitions Theory. Edited by Yu.V. Holovatch (World Scientific, 2020) [ISBN 978-981-121-621-3].

L.P. Kadanoff. Critical behavior, universality and scaling, Proc. Int. School Phys. (Acad. Press, 1971).

M.E. Fisher. The theory of critical point singularities. In: Critical Phenomena, Proceedings of the International School of Physics "Enrico Fermi. Edited by M.S. Green (Academic Press, 1971)

A.Z. Patashinskii, V.L. Pokrovskii. Fluctuation Theory of Phase Transition (Pergamon Press, 1979).

H.E. Stanley. Introduction to Phase Transition and Critical Phenomena (Oxford University Press, 1987).

M.A. Anisimov. Critical Phenomena in Liquids and Liquid Crystals (Gordon & Breach, 1991).

M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov, A.A. Povodyrev, J.A. Sengers. A general isomorphism approach to thermodynamic and transport properties of binary liquid mixtures near critical points. Physics A 220, 277 (1995).

L.D. Landau, E.M. Lifshits. Theoretical Physics, Statistical Physics (Pergamon Press, 2013), part 1, vol. 5.

K. Binder. Phase transitions in reduced geometry. Annu. Rev. Phys. Chem. 43, 33 (1992).

A.V. Chalyi, L.A. Bulavin, V.F. Chekhun, K.A. Chalyy, L.M. Chernenko, A.N. Vasilev, E.V. Zaitseva, G.V. Khrapijchuk, A.V. Severin, M.V. Kovalenko. Universality classes and critical phenomena in confined liquid systems, Cond. Matt. Phys. 16, 23008 (2013).

A.M. Polyakov. Conformal symmetry of critical fluctuations. J. Exp. Theor. Phys. Lett. 12, 381 (1970).

V.L. Pokrovskii. Feasibility of experimental verification of conformal invariance hypothesis. J. Exp. Theor. Phys. Lett. 17, 156 (1973).

H. Haken. Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology (Springer-Verlag, 1978).

H. Haken. Advanced Synergetics. Instability Hierarchies of Self-Organizating Systems and Devices. (Springer-Verlag, 1983).

R.P. Feynman, R.B. Leighton, M. Sands. The Feynman Lectures on Physics, vol. 1, Chapter 26. (California Institute of Technology, 2013); [URL:].

E. Noether. Invariant variation problems. Transport Theory and Statistical Physics 1 186 (1971).

L.D. Landau, E.M. Lifshits. Theoretical Physics. V. 1. Mechanics. (Pergamon Press, 2000).

I.R. Yukhnjvsky, M.F. Golovko. Statistical Theory of Classical Systems (Naukova Dumka, 1980).

A.V. Chalyi. Dynamic anomalies in confined supercooled water and bulk fluids. In: Modern Problems of Molecular Physics. Edited by L. Bulavin, A. Chalyi (Springer International Publishing, 2018) [ISBN: 978-3-319-61108-2].

K.A. Chalyy, K. Hamano, A.V. Chalyi. Correlating properties of a simple liquid at criticality in a reduced geometry. J. Mol. Liq. 92, 153 (2001).

L.A. Bulavin, K.O. Chalyy. Neutron Optics of Mesoscopic Liquids (Naukova Dumka, 2006).

R.C. Reid, J.V. Prausnitz, T.K. Sherwood. The Properties of Gases and Liquids (McGraw-Hill, 1977).

A.V. Chalyi. Surface tension in bulk and bounded liquids. J. Mol. Liq. 288, 110873 (2019).

A.V. Chalyi. Dimensional crossover in liquids in reduced geometry. In: Physics of Liquid Matter: Modern Problem. Edited by L. Bulavin, N. Lebovka (Springer International Publishing, 2015) [ISBN: 978-3319372235].

D.A. Fuentevilla, M.A. Anisimov. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys. Rev. Lett. 97, 195702 (2006).

C.E. Bertrand, M.A. Anisimov. Peculiar thermodynamics of the second critical point in supercooled water. J. Phys. Chem. B 115, 14099 (2011).

V. Holten, C.E. Bertrand, M.A. Anisimov, J.V. Sengers. Thermodynamics of supercooled water. J. Chem. Phys. 136, 094507 (2012).

V.M. Sysoev, A.V. Chalyi. Correlation functions and dynamic structure factor of non-isotopic systems. Theor. Math. Phys. 26, 126 (1976).

S.V. Fomichev, S.B. Khohlachev. On the matter equation of state near the critical point liquid-vapor. J. Exp. Theor. Phys. 66, 3 (1974).

D. Hubel, C. Stevens, H. Lee et al. The Brain. Scientific American 241, 45 (1979).

V.A. Berezovsky, N.N. Kolotilov. Biophysical Characteristics of Human Tissues. Reference Book (Naukova Dumka, 1982).

P.G. Kostyuk, O.A. Kryshtal. Mechanisms of Electrical Excitability of Nervous System (Nauka, 1981).

Medical and Biological Physics. Textbook for students of higher medical institutions. Edited by A.V. Chalyi (Nova Knyga, 2020) [ISBN 978-966-382-804-6].

V. Tsymbalyuk, V. Medvedev. Man and His Brain (Nova Knyga, 2022) [ISBN 978-966-382-925-8].

A.V. Chalyi. Inverse correlation radius expansions and the "Rectilinear diameter" singularity. Ukr. J. Phys. 21, 474 (1976).

J. Wang, M.A. Anisimov. Nature of vapor-liquid asymmetry in fluid criticality. Phys. Rev. E 75, 051107 (2007).

O. Bakai, M. Bratchenko, S. Dyuldya. On the singularity of the liquid-gas curve dimeter. Ukr. J. Phys. 65, 802 (2020).

L.M. Aptyukhoskaya, E.T. Shimanskaya, Yu.I. Shimanskii. Heptane coexistence curve near the critical point. J. Exp. Theor. Phys. 63, 2153 (1972).

E.T. Shimanskaya, I.V. Bezrychko, B.I. Basok, Yu.I. Shimanskii. Experimental definition of the critical exponents, asymmetric and non-asymptotic corrections in the coexistence-curve equation of freon-113. J. Exp. Theor. Phys. 80, 139 (1981).

M. Nakata, H. Kawahara. Coexistence curve for polystyrene-cyclohexane near the critical point. J. Chem. Phys. 62, 430349 (1975).

B.S. Maccabee, J. White. A non-symmetrical parametric equation of state for the extended critical region of carbon dioxide. Phys Lett. A 60, 179 (1977).

L.A. Bulavin, Yu.I. Shimanskii. The singularity of the coexistence-curve diameter of etheane. J. Exp. Theor. Phys. Lett. 29, 482 (1979).

A.V. Chalyi, L.M. Chernenko. Phase transitions in finitesize systems and synaptic transmission In: Dynamic Phenomena at Interfaces, Surfaces and Membranes. Edited by D. Beysens, N. Boccara, G. Forgacs (Nova Sci. Publ., 1993) [ISBN: 978-1560720898].

A.V. Chalyi, A.N. Vasil'ev. Correlation properties, critical parameters and critical light scattering in finite-size systems. J. Mol. Liq. 84, 203 (2000).

K.A. Chalyy, L.A. Bulavin, A.V. Chalyi. Dynamic scaling and central component width of critical opalescence spectrum in liquids with restricted geometry. J. Phys. Stud. 9, 66 (2005).

A.V. Chalyi, E.V. Zaitseva. Strange attractor in kinetic model of synaptic transmission. J. Phys. Stud. 11, 322 (2007).

A.V. Chalyi, E.V. Zaitseva. A kinetic model of synaptic transmission on intercell interaction. Ukr. J. Phys. 54, 366 (2009).

A.V. Chalyi, A.N. Vasilev, E.V. Zaitseva. Synaptic transmission as a cooperative phenomenon in confined systems. Cond. Matter Phys. 20, 13804 (2017).

I.S. Braude, N.N. Gal'tsov, V.I. Dotsenko, E.N. Chaika. Phase compositions of cast dental Ni-Cr-Mo and Co-Cr-Mo alloys. Phys. Metals and Metallography 100, 165 (2005).

V.I. Dotsenko, E.N. Chaika. Influence of progressive remelts on structure and physical-mechanical properties of alloy germanium GM-700. Metallophysics and Advanced Technologies 25, 297 (2003).

D.A. Gavryushenko, K.V. Cherevko, V.M. Sysoev. The influence of the chemical reactions on the diffusion phenomena in the cylindrical systems bounded with the membranes. J. Mol. Liq. 127, 71 (2006).

K.A. Chalyy, L.A. Bulavin, V.F. Chekhun, A.V. Chalyi, Y.V. Tsekhmister, L.M. Chernenko. Fundamentals and medical applications of neutron and light spectroscopy of confined liquids. IFMBE Proceedings 25, 197 (2009).

K.V. Cherevko, D.A. Gavryushenko, O.V. Korobko, V.M. Sysoev. Entropy production in the diffusion of a Margules solution in a flat-parallel pore. Ukr. J. Phys. 58, 988 (2018).

L.A. Bulavin, V. F. Chekhun, A.A. Vasilkevich, V.I. Kovalchuk, V.T. Krotenko, V.I. Slisenko, V.P. Trindyak, K.A. Chalyy, S.D. Galyant. Neutron investigations of self-diffusion of water molecules in plasmatic membranes. J. Phys. Stud. 8, 334 (2004).

K.V. Cherevko, D.A. Gavryushenko, L.A. Bulavin. Entropy production in a model biological system with facilitated diffusion. Ukr. J. Phys. 66, 714 (2021).




How to Cite

Chalyi, A., Chalyi, K., Zaitseva, E., Chaika, E., & Kryvenko, I. (2023). Physical Aspects of 2014 Nobel Prize in Physiology or Medicine: 2. The First Principle and Universality Class for Grid Cells in the Brain. Ukrainian Journal of Physics, 68(7), 462.



Physics of liquids and liquid systems, biophysics and medical physics