Synthesis and Characterization of a Novel Nanocomposite Polymer

Authors

  • A.S. Al-Kabbi Department of Physics, College of Science, Basrah University
  • S.J. Abbas Department of Physics, College of Science, Basrah University

DOI:

https://doi.org/10.15407/ujpe68.9.638

Keywords:

nanocomposite, thin films, polyaniline, dye, PVA

Abstract

One-dimensional nanostructures of PANI: PVA-g-EI nanocomposite are prepared by the interfacial polymerization method. The properties of a resulting green powder are studied by the X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and infrared spectroscopy (FTIR). Prepared thin films were characterized by UV-Vis and photoluminescence (PL) spectroscopies. The XRD pattern of the nanocomposite shows that the higher volume fraction of crystalline phases corresponds to the PANI polymer with the accepted monoclinic unit cell of PVA. Nano-sized irregular particles arranged in clusters appear in the TEM measurements and SEM images, which testifies to the agglomeration without uniform packing. EDX confirms that the PVA-g-EI is incorporated in the structure of the polymer nanocomposite. A significant shift in the absorption edge with three PL independent emission peaks again confirms that PANI/PVA-g-EI form a nanocomposite.

References

K. Namsheer, S.R. Chandra. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659 (2021).

https://doi.org/10.1039/D0RA07800J

C.S. Markus, S.S. Niyazi. Low band gap conjugated semiconducting polymers. Adv. Mater. Technol. 6, 2000857 (2021).

https://doi.org/10.1002/admt.202000857

L. Thanh-Hai, K. Yukyung, Y. Hyeonseok. Electrical and electrochemical properties of conducting polymers. Polymers 9, 150 (2017).

https://doi.org/10.3390/polym9040150

Y.C. Kuan, I. Giuliana, A.F. Mariana. Emerging Materials for Energy Conversion and Storage (Elsevier Inc., 2018).

B. Mahnoush, A.R. Suraya, S. Suhaidi, R.S. Amir, N.L. Hong. Preparations, properties, and applications of polyaniline and polyaniline thin films - A review. Polymers 13, 2003 (2021).

https://doi.org/10.3390/polym13122003

M. Jaymand. Recent progress in chemical modification of polyaniline. Prog. Polym. Sci. 38, 1287 (2013).

https://doi.org/10.1016/j.progpolymsci.2013.05.015

G.G. Liao. Preparation of sulfonated polystyrene/polyaniline/silver composites with enhanced anticorrosive properties. Int. J. Chem. 10, 81 (2018).

https://doi.org/10.5539/ijc.v10n1p81

K. Fatemeh, M.N. Seyed, Z. Yasser, Y.R. Kyong. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review. Polymer Reviw. 61, 553 (2021).

https://doi.org/10.1080/15583724.2020.1858871

P.S. Khiew N.M. Huang, S. Radiman, M.S. Ahmad. Synthesis and haracterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater. Lett. 58, 516 (2020).

https://doi.org/10.1016/S0167-577X(03)00537-8

H.L.F. Eduardo, W.M. Azevado. Polyaniline-poly (vinyl alcohol) composite as an optical recording material. Synth. Met. 28, 149 (2002).

https://doi.org/10.1016/S0379-6779(01)00659-2

W. Jingjing, C. Hang, Z. Anan, Z. Renhao, B. Hua, Z. Tongyi. Facile synthesis of multi-functional elastic polyaniline/polyvinyl alcohol composite gels by a solution assembly method, RSC. Adv. 10, 22019 (2020).

https://doi.org/10.1039/D0RA02238A

N.M. Tatiana, N.S. Eugeniya, A.M. Tatiana, Maria. Preparation and electrochemical characterization of PANI/PVA and PANI/Zr/PVA composites for supercapacitor application. Adv. Mater. Lett. 7, 441 (2016).

https://doi.org/10.5185/amlett.2016.6074

A. Amir. A review of dye incorporated conducting polymers application as sensors and in solar cells. Mater. Sci. Forum 657, 208 (2010).

https://doi.org/10.4028/www.scientific.net/MSF.657.208

Q.A. Ali, A. Shawi, A.H. Harith. Calculation of some electrical properties of poly vinyl alcohol grafted with eosin dye (PVA-g-Ei). J. Basrah Res. Sci. 35, 33 (2009).

J.A. Saeed, R. Mamta, S.K. Tripathi. Preparation and characterization of nanocomposite between poly (anilineco-m-chloroaniline)-copper sulfide nanoparticles. Phys. B 443, 107 (2014).

https://doi.org/10.1016/j.physb.2014.02.025

J. Bhadra, N.K. Madi, N.J. Al-Thani, M.A. Al-Maadeed. Polyaniline/polyvinyl alcohol nanocomposites: Effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties. Synth. Met. 191, 126 (2014).

https://doi.org/10.1016/j.synthmet.2014.03.003

A. Fattoum, Z.B. Othman, M. Arous. Dc and Ac conductivity of polyaniline/poly (methyl methacrylathe) nanocomposite below the percolation threshold. Mater. Chem. Phys. 135, 17 (2012).

https://doi.org/10.1016/j.matchemphys.2012.04.033

E. Dmitrieva, L. Dunsch. How linear is "linear" polyaniline. J. Phy. Chem. B 115, 6401 (2011).

https://doi.org/10.1021/jp200599f

S. Padmapriya, S. Harinipriya, V. Sudha, D. Kumar, S.P.B. Chaubey. Polyaniline coated copper for hydrogen storage and evolution in alkaline medium. Int. J. Hydrogen Energy 42, 20453 (2017).

https://doi.org/10.1016/j.ijhydene.2017.06.204

S. Bhadra, D. Khastgir. Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym. Test. 27, 851 (2008).

https://doi.org/10.1016/j.polymertesting.2008.07.002

S. Padmapriya, S. Harinipriya, K. Jaidev, V. Sudha, D. Kumar, S. Pal. Storage and evolution of hydrogen in acidic medium by polyaniline. Int. J. Energy Res. 42, 1196 (2017).

https://doi.org/10.1002/er.3920

B.D. Cullity, S.R. Stock. Elements of X-Ray Diffraction (Pearson Education Limited, 2014).

B.S. Singu, P. Srinivasan, S. Pabba. Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor. J. Electrochem. Soc. 159, A6 (2012).

https://doi.org/10.1149/2.036201jes

H. Xia, Q. Wang. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J. Nanopart. Res. 3, 399 (2001).

M. Cabuka, B. G¨und¨uz. Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration. Appl. Surf. Sci. 424, 345 (2017).

https://doi.org/10.1016/j.apsusc.2017.03.010

R. Ghosh, F.C. Spano. Excitons and polarons in organic materials. Acc. Chem. Res. 53, 2201 (2020).

https://doi.org/10.1021/acs.accounts.0c00349

C. Show, C. Kuen, C. Ching, L. Hsun. White-light emission from electroluminescence diode with polyaniline as the emitting layer. Synthetic Metals 82, 207 (1996).

https://doi.org/10.1016/S0379-6779(96)03790-3

M. Sharma, D. Kaushik, R.R. Singh, R.K. Pandey. Stady of electropolymerised polyaniline films using cyclic voltammetry, atomicforce microscopy and optical spectroscopy. J. Mater. Sci. Mater. Electron 17, 537 (2006).

https://doi.org/10.1007/s10854-006-8238-9

J. Cornil, D.A. dos Santos, X. Crispin, R. Silbey, J.L. Bredas. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: A quantum-chemical characterization. J. Am. Chem. Soc. 120, 1289 (1998).

https://doi.org/10.1021/ja973761j

M.J. Hashim, M.J. Eman, Q.A. Ali. Dispersion parameters, optical constant and photoluminescence of poly vinyl alcohol grafted eosin-Y dye (PVA-g-Ei). J. Basrah Researches (Sciences) 36, 3 (2010).

Downloads

Published

2023-10-20

How to Cite

Al-Kabbi, A., & Abbas, S. (2023). Synthesis and Characterization of a Novel Nanocomposite Polymer. Ukrainian Journal of Physics, 68(9), 638. https://doi.org/10.15407/ujpe68.9.638

Issue

Section

Structure of materials