Existence of Small-Amplitude Double Layers in Two-Temperature Non-Isothermal Plasma

Authors

  • S. Chattopadhyay Department of Mathematics, Daria J L N Vidyalaya, Sonargaon, Teghoria, Narendrapur Station Road

DOI:

https://doi.org/10.15407/ujpe68.12.795

Keywords:

two-temperature non-isothermal electrons, Sagdeev potential method, heavier negative ions, double layers, double-layer solutions

Abstract

In the presence of warm negative ions, ion-acoustic small-amplitude monotonic double layers are theoretically investigated in a plasma consisting of warm positive ions, warm positrons, and two-temperature non-isothermal electrons under the variation of the trapping parameters of electrons, concentration of positrons, and mass ratios of heavier negative ions to lighter positive ions by the Sagdeev pseudopotential method. The corresponding double layer solutions are also discussed for the same variation. Consequently, ion-acoustic solitary waves and double layers have been observed in auroral and magnetospheric plasmas with two-temperature electron distributions found in a laboratory, as well as in the space. This paper shows the effects of trapping parameters of electrons, positron concentration, and mass ratios of heavier negative ions to lighter positive ions on the Sagdeev potential function ψ(φ) and double layer solutions φDL for small-amplitude monotonic double layers. The results are presented graphically in Figs. 1 to 6.

References

H. Schamel, V.I. Maslov. Adiabatic growth of electron holes in current-carrying plasmas. Phys. Scr. 50, 42 (1994).

https://doi.org/10.1088/0031-8949/1994/T50/006

V. Maslov, H. Schamel. Growing electron holes in drifting plasmas. Phys. Lett. A 178 (1-2), 171 (1993).

https://doi.org/10.1016/0375-9601(93)90746-M

R. Bharuthram, P.K. Shukla. Large amplitude ion-acoustic double layers in a double Maxwellian electron plasma. Phys. Fluids 29, 3214 (1986).

https://doi.org/10.1063/1.865839

S.L. Jain, R.S. Tiwari, S.R. Sharma. Large amplitude ionacoustic double layers in multispecies plasma. Canad. J. Phys. 68, 474 (1990).

https://doi.org/10.1139/p90-075

L.L. Yadav, S.R. Sharma. Obliquely propagating ionacoustic double layers in a multicomponent magnetized plasma. Phys. Scr. 43, 106 (1991).

https://doi.org/10.1088/0031-8949/43/1/018

V.I. Maslov. Evolution of ion-acoustic potential well in a current-carrying plasma. Fizika Plazmy 16 (6), 759 (1990).

V.I. Maslov. Properties and evolution of nonstationary double layers in nonequilibrium plasma. In: Proc. of 4th Symposium on Double Layers and other Nonlinear Potential Structures in Plasma (1992), p. 82.

R.L. Merlino, J.J. Loomis. Double Layers in a plasma with negative ions. Phys. Fluids B 2, 2865 (1990).

https://doi.org/10.1063/1.859355

K.S. Goswami, S. Bujarbarua. Theory of weak ion-acoustic double layers. Phys. Lett. A 108, 149 (1985).

https://doi.org/10.1016/0375-9601(85)90847-3

T.S. Gill, P. Bala, H. Kaur, N.S. Saini, S. Bansal, J. Kaur. Ion-acoustic solitons and double layers in a plasma consisting of positive and negative ions with non-thermal electrons. Euro. Phys. J. D 31, 91 (2004).

https://doi.org/10.1140/epjd/e2004-00121-4

S.G. Tagare, R.V. Reddy. Effect of ionic temperature on ion-acoustic solitons in a two-ion warm plasma consisting of negative ions and non-isothermal electrons. Plasma Phys. Controlled Fusion 29, 671 (1987).

https://doi.org/10.1088/0741-3335/29/5/008

M.K. Mishra, R.S. Chhabra. Ion-acoustic compressive and rarefactive solitons in a warm multicomponent plasma with negative ions. Phys. Plasmas 3, 4446 (1996).

https://doi.org/10.1063/1.872063

P. Carlqvist. On the acceleration of energetic cosmic particles by electrostatic double layers. IEEE Trans. Plasma Sci. PS-14 (6), 794 (1986).

https://doi.org/10.1109/TPS.1986.4316627

J.E. Borovsky. The production of ion conics by oblique double layers. J. Geophys. Res. 89, 2251 (1984).

https://doi.org/10.1029/JA089iA04p02251

M. Temerin, K. Cerny, W. Lotko, F.S. Mozer. Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175 (1982).

https://doi.org/10.1103/PhysRevLett.48.1175

D.E. Baldwin, B.G. Logan. Improved Tandem mirror fusion reactor. Phys. Rev. Lett. 43, 1318 (1979).

https://doi.org/10.2172/6227195

S.I. Popel, S.V. Vladimirov, P.K. Shukla. Ion-acoustic solitons in electron-positron-ion plasmas. Phys. plasmas 2, 716 (1995).

https://doi.org/10.1063/1.871422

S. Chattopadhyay, S.N. Paul. Compressive and Rarefactive solitary waves in plasma with cold drifting positive and negative ions. The African Review of Phys. 7 (0033), 289 (2012).

S. Chattopadhyay. Higher order solitons and double layers in Non-isothermal plasma. Brazilian J. Phys. 53, 6 (2023).

https://doi.org/10.1007/s13538-022-01205-5

H. Schamel. A modified Korteweg- de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9 (3), 377 (1973).

https://doi.org/10.1017/S002237780000756X

S. Chattopadhyay. Compressive solitons and double layers in Non-isothermal plasma. Brazilian J. Phys. 52, 4 (2022).

https://doi.org/10.1007/s13538-022-01120-9

K.Y. Kim. Theory of weak shock-like structures. Phys. Lett.A 136 (1-2), 63 (1989).

https://doi.org/10.1016/0375-9601(89)90678-6

J.M. Han, K.Y. Kim. Weak non-monotonic double layers and shock-like structures in multispecies plasma. Plasma Phys. Control. Fusion 36 (7), 1141 (1994).

https://doi.org/10.1088/0741-3335/36/7/004

Tae Han Kim, Kwang Youl Kim. Ion acoustic monotonic double layer in a weak relativistic plasma. J. Korean Phys. Soc. 42 (3), 363 (2003).

T.H. Kim, K.Y. Kim. Modified K- dV theory of nonmonotonic double layer in a weak relativistic plasma. Phys. Letts. A 286 (2-3), 180 (2001).

https://doi.org/10.1016/S0375-9601(00)00838-0

H. Schamel. Analytic BGK modes and their modulational instability. J. Plasma Phys. 13, 139 (1975).

https://doi.org/10.1017/S0022377800025927

Tae-Han Kim. Modified korteweg-de vries theory of monotonic double layers in plasmas with negative ions. J. Korean Phys. Soc. 48 (1), 150 (2006).

M. Raffah Bahaaudin, A.A. Abid, Y. Al-Hadeethi, H.H. Somaily. Influence of xenon-fluorine-sulfur hexafluoride and argon-fluorine-sulfur hexafluoride streaming on dust surface potential that has cairn-tsallis distributed plasmas. Appl. Sci. (MDPI) 12 (21), 11212 (2022).

https://doi.org/10.3390/app122111212

M.K. Mishra, A.K. Arora, R.S. Chhabra. Ion - acoustic compressive and rarefactive double layers in a warm multicomponent plasma with negative ions. Phys. Rev. E 66, 046402 (2002).

https://doi.org/10.1103/PhysRevE.66.046402

Downloads

Published

2024-01-06

How to Cite

Chattopadhyay, S. (2024). Existence of Small-Amplitude Double Layers in Two-Temperature Non-Isothermal Plasma. Ukrainian Journal of Physics, 68(12), 795. https://doi.org/10.15407/ujpe68.12.795

Issue

Section

Plasma physics