Carrier Decay Lifetimes in the Narrow-gap Hg1–xCdxTe at the Interband and Intraband Excitations

Authors

  • S. Staryi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I. Lysjuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O. Golenkov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Z. Tsybrii V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S. Danilov Terahertz Center, University of Regensburg
  • J. Gumenjuk-Sichevska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • K. Andrieieva V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • M. Smolii V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • F. Sizov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.8.543

Keywords:

HgCdTe, lifetime, interband and intraband excitations, terahertz radiation

Abstract

The lifetimes of photoconductive decay carriers under interband and intraband excitations are studied in epitaxial layers of narrow-gap Hg1−xCdxTe (x ∼0.2). Samples with large distances (>3 mm) between small-area electrical contacts and small distances (∼10 μm) with largearea contacts (THz antennas) are studied. The lifetimes of decay carriers for intraband and interband excitations are measured and compared. It has been established that, in samples with n-type conductivity, the lifetimes are comparable (in the interval of 40 ns) for both methods of excitation. At the same time, in samples with a small distance between contacts and a large area (bow-tie antennas), contacts make the main contribution to recombination. The elimination of recombination at the contacts leads to a lifetime of ∼10−6 s.

References

D.L. Polla, C.E. Jones. Deep level studies of Hg1−xCdxTe. I: Narrow-band-gap space-charge spectroscopy. J. Appl. Phys. 52, 5118 (1981).

https://doi.org/10.1063/1.329411

Ch.W. Myles, P.F. Williams, R.A. Chapman, E.G. Bylander. Identification of defect centers in Hg1−xCdxTe using their energy level composition dependence. J. Appl. Phys. 57 (12), 5279 (1985).

https://doi.org/10.1063/1.334842

K. Lishka. Deep level defects in narrow gap semiconductors. Phys. Status Solidi B 133, 17 (1986).

https://doi.org/10.1002/pssb.2221330104

R.E. Longshore. MCT properties, growth methods and characterization. In: Handbook of Infra-Red Detection Technologies (Elsevier, 2002).

https://doi.org/10.1016/B978-185617388-9/50007-1

W. Lei, J. Antoszewski, L. Faraone. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2, 041303 (2015).

https://doi.org/10.1063/1.4936577

M.A. Kinch. State-of-the-Art Infrared Detector Technology (SPIE Press, 2014) [ISBN: 9781628412895].

https://doi.org/10.1117/3.1002766

A. Rogalski. Infrared and Terahertz Detectors (CRC Press, Boca Raton, 2019) [ISBN: 9781315271330].

https://doi.org/10.1201/b21951

P. Landsberg. Recombination in Semiconductors (Cambridge Univ. Press, 1992) [ISBN: 0521361222].

https://doi.org/10.1017/CBO9780511470769

D. Lee, P. Dreiske, J. Ellsworth, R. Cottier, A. Chen, S. Tallaricao, A. Yulius, M. Carmody, E. Piquette, M. Zandian, S. Douglaset. Law 19: The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020).

https://doi.org/10.1117/12.2564902

A.R. Beattie. Quantum efficiency in InSb. J. Phys. Chem. Solids 23, 1049 (1962).

https://doi.org/10.1016/0022-3697(62)90122-1

S.E. Schacham, E. Finkman. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. J. Appl. Phys. 57, 2001 (1985).

https://doi.org/10.1063/1.334386

A. Kobayashi, O.F. Sankey, J.D. Dow. Chemical trends for defect energy levels in Hg1−xCdxTe. Phys. Rev. B 25, 6367 (1982).

W. Li, J.D. Patterson. Deep defects in narrow-gap semiconductors. Phys. Rev. B 50, 14903 (1994).

https://doi.org/10.1103/PhysRevB.50.14903

W. M.Bullis. Measurement of carrier lifetime in semiconductors - An annotated bibliography covering the period 1949-1967. NBS Technical Note 465, 1 (1968).

https://doi.org/10.6028/NBS.TN.465

R.J. Deri, J.P. Spoonhower. Microwave photoconductivity lifetime measurements: Experimental limitations. Rev. Sci. Instrum. 55, 1343 (1984).

https://doi.org/10.1063/1.1137937

M. Kunst, G. Beck. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. J. Appl. Phys. 60, 3558 (1986).

https://doi.org/10.1063/1.337612

S. Mae, T. Tawara, H. Tsuchida. Microscopic FCA System for depth-resolved carrier lifetime measurement in SiC. Mater. Sci. Forum 924, 269 (2018).

https://doi.org/10.4028/www.scientific.net/MSF.924.269

T. Asada, Y. Ichikawa, M. Kato. Carrier lifetime measurements in semiconductors through the microwave photoconductivity decay method. J. Vis. Exp. 146, e59007 (2019).

https://doi.org/10.3791/59007

V.C. Lopes, A.J. Syllaios, M.C. Chen. Minority carrier lifetime in mercury cadmium telluride. Semicond. Sci. Tech. 8, 824 (1993).

https://doi.org/10.1088/0268-1242/8/6S/005

S.A. Dvoretsky, N.N. Mikhailov, V.G. Remesnik, Yu. Sidorov, V. Shvets, D. Ikusov, V. Varavin, M. Yakushev, J. Gumenjuk-Sichevska, A. Golenkov, I. Lysiuk, Z. Tsybrii, A. Shevchik-Shekera, F. Sizov, A. Latyshevetal. MBEgrown MCT hetero- and nanostructures for IR and THz detectors. Opto-Electron. Rev. 27, 282 (2019).

https://doi.org/10.1016/j.opelre.2019.07.002

F. Sizov, Z. Tsybrii, S. Danilov, N. Mikhailov, S. Dvoretsky, J. Gumenjuk-Sichevska. THz polarization-dependent response of antenna-coupled HgCdTe photoconductors under an external constant electric field. Semicond. Sci. Tech. 36, 105009 (2021).

https://doi.org/10.1088/1361-6641/ac1770

S.A. Dvoretsky, M.F. Stupak, N.N. Mikhailov, V.S. Varavin, V.G. Remesnik, S.N. Makarov, A.G. Elesin, A.G. Verhoglyad. New recombination centers in MBE MCT layers on (013) GaAs substrates. Phys. Solid State 65, 53 (2023).

https://doi.org/10.21883/PSS.2023.01.54974.466

V. Dobrovolsky, F. Sizov. A room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer. Semicond. Sci. Tech. 22, 103 (2007).

https://doi.org/10.1088/0268-1242/22/2/017

V. Zabudsky, F. Sizov, N. Momot, Z. Tsybrii, N. Sakhno, S. Bunchuk, N. Michailov, V. Varavin. THz/sub-THz direct detection detector on the basis of electron/hole heating in MCT layers. Semicond. Sci. Tech. 27, 045002 (2012).

https://doi.org/10.1088/0268-1242/27/4/045002

V. Dobrovolsky, F. Sizov. THz/sub-THz bolometer based on electron heating in a semiconductor waveguide. OptoElectron. Rev. 18, 250 (2010).

https://doi.org/10.2478/s11772-010-1033-8

Downloads

Published

2023-10-02

How to Cite

Staryi, S., Lysjuk, I., Golenkov, O., Tsybrii, Z., Danilov, S., Gumenjuk-Sichevska, J., Andrieieva, K., Smolii, M., & Sizov, F. (2023). Carrier Decay Lifetimes in the Narrow-gap Hg1–xCdxTe at the Interband and Intraband Excitations. Ukrainian Journal of Physics, 68(8), 543. https://doi.org/10.15407/ujpe68.8.543

Issue

Section

Semiconductors and dielectrics