Copper-Enriched Nanostructured Conductive Thermoelectric Copper(I) Iodide Films Obtained by Chemical Solution Deposition on Flexible Substrates

Authors

  • N.P. Klochko National Technical University “Kharkiv Polytechnic Institute”
  • V.R. Kopach National Technical University “Kharkiv Polytechnic Institute”
  • S.I. Petrushenko V.N. Karazin Kharkiv National University, Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation, Department of Advanced Materials
  • E.M. Shepotko National Technical University “Kharkiv Polytechnic Institute”
  • S.V. Dukarov V.N. Karazin Kharkiv National University
  • V.M. Sukhov V.N. Karazin Kharkiv National University
  • A.L. Khrypunova National Technical University “Kharkiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/ujpe69.2.115

Keywords:

copper(I) iodide, thermoelectricity, carrier transport, nanostructure, thin film, chemical solution process

Abstract

The objects of our research are flexible thin-film thermoelectric materials with nanostructured CuI layers 0.5–1.0 μm thick, fabricated by the chemical solution method Successive Ionic Layer Adsorption and Reaction (SILAR) on flexible polyethylene terephthalate and polyimide substrates. These cubic γ-CuI films differ from films obtained by other chemical solution methods, such as spin-coating, sputtering, and inject printing, in their low resistivity due to acceptor impurities of sulfur and oxygen introduced into CuI from aqueous precursor solutions during SILAR deposition. Energy barriers at the boundaries of 18–22 nm CuI nanograins and a large number of charge carriers inside the nanograins determine the transport properties in the temperature interval 295–340 K characterized by transitions from semiconductor to metallic behavior with increasing temperature, which are typical of nanostructured degenerate semiconductors. Due to the resistivity of about 0.8 mΩ· m at 310 K and the Seebeck coefficient 101 μV/K, the thermoelectric power factor of the CuI film 1.0 μm thick on the polyimide substrate is 12.3 μW/(m · K2), which corresponds to modern thin-film p-type thermoelectric materials. It confirms the suitability of CuI films obtained by the SILAR method for the fabrication of promising inexpensive non-toxic flexible thermoelectric materials.

References

P.P. Murmu, V. Karthik, S.V. Chong, S. Rubanov, Z. Liu, T. Mori, J. Yi, J. Kennedy. Effect of native defects on thermoelectric properties of copper iodide films. Emergent Mater. 4, 761 (2021).

https://doi.org/10.1007/s42247-021-00190-w

A.S. Lemine, J. Bhadra, N.J. Al-Thani, Z. Ahmad. Promising transparent and flexible thermoelectric modules based on p-type CuI thin films - a review. Energy Reports 8, 11607 (2022).

https://doi.org/10.1016/j.egyr.2022.09.020

P. Darnige, Y. Thimont, L. Presmanes, A. Barnab'e. Insights into stability, transport, and thermoelectric properties of transparent p-type copper iodide thin films. J. Mater. Chem. C 11, 630 (2023).

https://doi.org/10.1039/D2TC03652E

A. Crovetto, H. Hempel, M. Rusu, L. Choubrac, D. Kojda, K. Habicht, T. Unold. Water adsorption enhances electrical conductivity in transparent p-type CuI. ACS Appl. Mater. Interfaces 43, 48741 (2020).

https://doi.org/10.1021/acsami.0c11040

A. Liu, H. Zhu, M. Kim, J. Kim, Y. Noh. Engineering copper iodide (CuI) for multifunctional p-type transparent semiconductors and conductors. Adv. Sci. 8, 2100546 (2021).

https://doi.org/10.1002/advs.202100546

C. Cao, S. Chen, J. Liang, T. Li, Z. Yan, B. Zhang, N. Chen. A high-efficient photo-thermoelectric coupling generator of cuprous iodide. AIP Advances 12, 115125 (2022).

https://doi.org/10.1063/5.0112502

O. Caballero-Calero, J. R. Ares, M. Mart'ın-Gonz'alez. Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the Earth. Adv. Sustainable Syst. 5, 2100095 (2021).

https://doi.org/10.1002/adsu.202100095

X. Han, Y. Lu, Y. Liu, M. Wu, Y. Li, Z. Wang, K. Cai. CuI/Nylon membrane hybrid film with large Seebeck effect. Chin. Phys. Lett. 38, 126701 (2021).

https://doi.org/10.1088/0256-307X/38/12/126701

N.P. Klochko, K.S. Klepikova, V.R. Kopach, I.I. Tyukhov, D.O. Zhadan, G.S. Khrypunov, S.I. Petrushenko, S.V. Dukarov, V.M. Lyubov, M.V. Kirichenko, A.L. Khrypunova. Semitransparent p-CuI and n-ZnO thin films prepared by low temperature solution growth for thermoelectric conversion of near-infrared solar light. Solar Energy 171, 704 (2018).

https://doi.org/10.1016/j.solener.2018.07.030

N.P. Klochko, K.S. Klepikova, D.O. Zhadan, V.R. Kopach, I.V. Khrypunova, S.I. Petrushenko, S.V. Dukarov, V.M. Lyubov, A.L. Khrypunova. Nanostructured ZnO and CuI thin films on Poly(Ethylene Terephthalate) tapes for UV-shielding applications J. Nano- Electron. Phys. 12, 03007 (2020).

S. Koyasu, M. Miyauchi. Recent research trends in point defects in copper iodide semiconductors J. Electron. Mater. 49, 907 (2020).

https://doi.org/10.1007/s11664-019-07833-z

B.R. Sankapal, E. Goncalves, A. Ennaoui, M.Ch. LuxSteiner. Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films 451-452, 128 (2004).

https://doi.org/10.1016/j.tsf.2003.11.002

D.K. Kaushik, M. Selvaraj, S. Ramu, A. Subrahmanyam. Thermal evaporated Copper Iodide (CuI) thin films: A note on the disorder evaluated through the temperature dependent electrical properties. Solar Energy Materials & Solar Cells 165, 52 (2017).

https://doi.org/10.1016/j.solmat.2017.02.030

M. Dongol, A. El-Denglawey, M.S. Abd El Sadek, I.S. Yahia. Thermal annealing effect on the structural and the optical properties of nano CdTe films. Optik 126, 1352 (2015).

https://doi.org/10.1016/j.ijleo.2015.04.048

D.K. Schroder. Semiconductor Material and Device Characterization, 3rd ed. (John Wiley & Sons Inc, 2006) [ISBN: 9780471739067, 0471739065].

https://doi.org/10.1002/0471749095

K.-H. Wu, C.-I. Hung. Effect of substrate on the spatial resolution of Seebeck coefficient measured on thermoelectric films. Int. J. Therm. Sci. 49, 2299 (2010).

https://doi.org/10.1016/j.ijthermalsci.2010.08.007

M. Kneiß, C. Yang, J. Barzola-Quiquia, G. Benndorf, H. von Wenckstern, P. Esquinazi, M. Lorenz, M. Grundmann. Suppression of grain boundary scattering in multifunctional p-type transparent γ-CuI. Adv. Mater. Interfaces 5, 1701411 (2018).

https://doi.org/10.1002/admi.201701411

N.P. Klochko, K.S. Klepikova, D.O. Zhadan, V.R. Kopach, Y.R. Kostyuchenko, I.V. Khrypunova, V.M. Lyubov, M.V. Kirichenko, A.L. Khrypunova, S.I. Petrushenko, S.V. Dukarov. Transport properties of cubic cuprous iodide films deposited by successive ionic layer adsorption and reaction. In: Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Edited by A.D. Pogrebnjak, O. Bondar. Springer Proceedings in Physics 240, (Springer, 2020).

https://doi.org/10.1007/978-981-15-1742-6_3

P. Sheng. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 21, 2180 (1980).

https://doi.org/10.1103/PhysRevB.21.2180

A. Yildiz, S.B. Lisesivdin, M. Kasap, M. Bosi. Anomalous temperature dependence of the electrical resistivity in In0.17Ga0.83N. Solid State Commun. 149, 337 (2009).

https://doi.org/10.1016/j.ssc.2008.11.026

X.-L. Shi, J. Zou, Z.-G. Chen. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 120, 7399 (2020).

https://doi.org/10.1021/acs.chemrev.0c00026

Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang. Recent developments in flexible thermoelectrics: From materials to devices. Renew. Sust. Energ. Rev. 137, 110448 (2021).

https://doi.org/10.1016/j.rser.2020.110448

Downloads

Published

2024-03-20

How to Cite

Klochko, N., Kopach, V., Petrushenko, S., Shepotko, E., Dukarov, S., Sukhov, V., & Khrypunova, A. (2024). Copper-Enriched Nanostructured Conductive Thermoelectric Copper(I) Iodide Films Obtained by Chemical Solution Deposition on Flexible Substrates. Ukrainian Journal of Physics, 69(2), 115. https://doi.org/10.15407/ujpe69.2.115

Issue

Section

Surface physics