Structural Features of Lamellar-Chain Hydrogels

Authors

  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • P. Kopčanský Institute of Experimental Physics, Slovak Academy of Sciences
  • I. Safarik Biology Centre, Czech Academy of Sciences
  • M.M. Lazarenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.Yu. Vergun Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe68.8.536

Keywords:

hydrogel, lamellar-chain network, small-angle X-ray scattering

Abstract

The possibility of creating hydrogels of a new lamellar-chain type in the framework of increased rigidity on the basis of ternary aqueous solutions of polymeric and oligomeric molecules has been considered. A hypothetical model of such a framework whose structural elements are oligomeric lamellas and polymer chains is proposed. These elements are connected, because the ends of the polymer chains are embedded into the pores of lamellas. A formula for the free energy of such a system is obtained. It is shown that an increase in the polymer concentration should lead to a mutual approach of the lamellas. This conclusion is consistent with the results of a small-angle X-ray scattering experiment in which ternary aqueous solutions with various concentrations of a polymer (polyethylene glycol) or an oligomer (sodium dodecyl sulfate) are studied.

References

The Mechanics of Hydrogels: Mechanical Properties, Testing, and Applications. Edited by H. Li, V. Silberschmidt (Elsevier, 2022) [ISBN: 978-0081028629].

Hydrogels - From Tradition to Innovative Platforms with Multiple Applications. Edited by L. Popa, M.V. Ghica, C. Dinu-Pirvu (IntechOpen, 2023) [ISBN: 978-1803555843].

Multicomponent Hydrogels: Smart Materials for Biomedical Applications. Edited by J.M. Dodda, K. Deshmukh, D. Bezuidenhout (Royal Society of Chemistry, 2023) [ISBN: 978-1839167270].

P.-G. Gennes. Scaling Concepts in Polymer Physics (Cornell University Press, 1979) [ISBN: 978-0801412035].

N. Chirani, L'Hocine Yahia, L. Gritsch, F.L. Motta, S. Chirani, S. Far'e. History and applications of hydrogels. J. Biomed. Sci. 4, 1 (2015).

Hydrogels. Gels Horizons: From Science to Smart Materials. Edited by V. Thakur, M. Thakur (Springer, 2018) [ISBN: 978-9811060779].

Sustainable Hydrogels: Synthesis, Properties, and Applications. Edited by S. Thomas, B. Sharma, P. Jain, S. Shekhar (Elsevier, 2023) [ISBN: 978-0323986182].

E. Cal'o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2014).

https://doi.org/10.1016/j.eurpolymj.2014.11.024

Polysaccharide Hydrogels: Characterization and Biomedical Applications. Edited by F. Alhaique, P. Matricardi, T. Coviello (Pan Stanford Publishing, 2016) [ISBN: 978-9814613620].

Intelligent Hydrogels in Diagnostics and Therapeutics. Edited by A. Kaushik, A. Ghosal (CRC Press, 2020) [ISBN: 978-1000056143].

Multifunctional Hydrogels for Biomedical Applications. Edited by I. Pashkuleva, R.A. Pires, R.L. Reis (Wiley, 2022) [ISBN: 978-3527347162].

A.S. Mundada. Update on Polymers for Ocular Drug Delivery (Smithers Information Limited, 2011) [ISBN: 978-1847355645].

Ophthalmic Product Development: From Bench to Bedside. Edited by S. Neervannan, U.B. Kompella (Springer, 2022) [ISBN: 978-3030763671].

Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine. Edited by B. Ghosh, T.K. Giri (Elsevier, 2021) [ISBN: 978-0128216507].

U.G. Spizzirri, G. Cirillo. Designing Hydrogels for Controlled Drug Delivery: Key Features and Future Perspectives (CRC Press, 2021) [ISBN: 978-0367782023].

Wound Healing Biomaterials., Vol.2: Functional Biomaterials. Edited by M. Agren (Elsevier, 2016) [ISBN: 978-0081006061].

Therapeutic Dressings and Wound Healing Applications. Edited by J. Boateng (Wiley, 2020) [ISBN: 978-1119433262].

Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Edited by F. Jia, X. Wang, Y. Yang, Y. Shi (Frontiers Media SA, 2020) [ISBN: 978-2889637652].

Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundamentals to Applications. Edited by J.M. Oliveira, J. Silva-Correia, R.L. Reis (Elsevier, 2023) [ISBN: 978-0128239483].

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).

https://doi.org/10.15407/ujpe64.3.238

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).

https://doi.org/10.15407/ujpe65.1.50

V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matter Phys. 24, 43601 (2021).

https://doi.org/10.5488/CMP.24.43601

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

V.I. Kovalchuk, O.M. Alekseev, M.M. Lazarenko. Turbidimetric monitoring of phase separation in aqueous solutions of thermoresponsive polymers. J. Nano- Electron. Phys. 14, 01004 (2022).

https://doi.org/10.21272/jnep.14(1).01004

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Determination of the surface tension coefficient of polymer gel. Ukr. J. Phys. 67, 365 (2022).

https://doi.org/10.15407/ujpe67.5.365

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Application of the light scattering method to study the hydrogel surface structure. Ukr. J. Phys. 67, 463 (2022).

https://doi.org/10.15407/ujpe67.6.463

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Electrocapillary properties of hydrogels. Ukr. J. Phys. 67, 658 (2022).

https://doi.org/10.15407/ujpe67.9.658

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, S.V. Kondratenko, S.O. Alekseev, A.V. Brytan, L.Yu. Vergun, L.A. Bulavin. Features of network formation in solutions of rigid chain polymers. Ukr. J. Phys. 68, 132 (2023).

https://doi.org/10.15407/ujpe68.2.132

M. Karg, A. Pich, T. Hellweg, T. Hoare, L.A. Lyon, J.J. Crassous, D. Suzuki, R.A. Gumerov, S. Schneider, I.I. Potemkin, W. Richtering. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35, 6231 (2019).

https://doi.org/10.1021/acs.langmuir.8b04304

X. Liu, L. Zhang, B.El. Fil, C.D. Diaz-Marin, Y. Zhong, X. Li, S. Lin, E.N. Wang. Unusual temperature dependence of water sorption in semicrystalline hydrogels. Adv. Mater. 35, 2211763 (2023).

https://doi.org/10.1002/adma.202211763

N. Heydari, M. Asgari, N.S. Kaveh, Z. Fakhroueian. Novel application of PEG/SDS interaction as a wettability modifier of hydrophobic carbonate surfaces. Pet. Sci. 16, 318 (2019).

https://doi.org/10.1007/s12182-018-0260-z

Y. Deng, L. Yang. Preparation and characterization of polyethylene glycol (PEG) hydrogel as shape-stabilized phase change material. Appl. Therm. Eng. 114, 1014 (2017).

https://doi.org/10.1016/j.applthermaleng.2016.11.207

L.E. Jansen, L.D. Amer, E.Y-T. Chen, T.V. Nguyen, L.S. Saleh, T. Emrick, W.F. Liu, S.J. Bryant, S.R. Peyton. Zwitterionic PEG-PC hydrogels modulate the foreign body response in a modulus-dependent manner. Biomacromolecules 19, 2880 (2018).

https://doi.org/10.1021/acs.biomac.8b00444

C. Lin, K.S. Anseth. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631 (2009).

https://doi.org/10.1007/s11095-008-9801-2

S.T. Lust, D. Hoogland, M.D.A. Norman, C. Kerins, J. Omar, G.M. Jowett, T.T.L. Yu, Z. Yan, J.Z. Xu, D. Marciano, R.M.P. da Silva, C.A. Dreiss, P. Lamata, R.J. Shipley, E. Gentleman. Selectively cross-linked tetra-PEG hydrogels provide control over mechanical strength with minimal impact on diffusivity. ACS Biomater. Sci. Eng. 7, 4293 (2021).

https://doi.org/10.1021/acsbiomaterials.0c01723

M. Claesson, K. Engberg, C.W. Frank, M. Andersson. Meso-ordered soft hydrogels. Soft Matter 8, 8149 (2012).

https://doi.org/10.1039/c2sm26226f

G. Wanka, H. Hoffmann, W. Ulbricht. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromoleciles 27, 4145 (1994).

https://doi.org/10.1021/ma00093a016

L.A. Bulavin, O.Y. Aktan, Y.F. Zabashta. Vacancies in oligomer crystals. Polym. Sci. Ser. A 51, 1023 (2009).

https://doi.org/10.1134/S0965545X09090090

A.M. Kosevich. The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices (Wiley, 2005) [ISBN: 978-3527405084].

https://doi.org/10.1002/352760667X

Small Angle X-Ray Scattering. Edited by O. Glatter, O. Kratky (Academic Press, UK, 1982) [ISBN: 978-0122862809].

U.W. Gedde. Polymer Physics (Springer, 2013) [ISBN: 978-9401105439].

P. Debye. The intrinsic viscosity of polymer solutions. J. Chem. Phys. 14, 636 (1946).

https://doi.org/10.1063/1.1724075

Published

2023-10-02

How to Cite

Zabashta, Y., Kovalchuk, V., Kopčanský, P., Safarik, I., Lazarenko, M., Vergun, L., & Bulavin, L. (2023). Structural Features of Lamellar-Chain Hydrogels. Ukrainian Journal of Physics, 68(8), 536. https://doi.org/10.15407/ujpe68.8.536

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

<< < 1 2 3 4 5 6