Plasmon Resonance Properties of Au, Cu and Ag Multi-layered Structures with P(VDF-TrFE)


  • A.L. Yampolskyi Taras Shevchenko National University of Kyiv
  • O.V. Makarenko Taras Shevchenko National University of Kyiv
  • D.V. Zaporoshchenko Taras Shevchenko National University of Kyiv



surface plasmon resonance, biosensor, P(VDF-TrFE), thin metal films, tunable sensor, attenuated total reflection


The theoretical modeling of the optical response of layered metal-polymer structures, which can be employed as plasmonic sensors, is carried out. The calculation of their linearly polarized light reflection is performed with the use of the well-known matrix method, which describes the electromagnetic radiation propagation through a sequence of homogeneous flat-parallel media layers. In this way, the attenuated total reflection curves of the structures containing metal films (Au, Cu, or Ag) and a polymer dielectric are obtained and analyzed. A new sensor is proposed, which will utilize the ferroelectric P(VDF-TrFE) copolymer separating metal films. This might be a perspective idea for the creation of tunable plasmonic sensors. The dependencies of the angular position of a surface plasmon resonance versus the thicknesses of structure’s layers, as well as versus the refractive index of the medium contacting to the free surface of a sensor, are considered. This makes it possible to carry out the approximate search for optimal constructive parameters of a sensor, namely, the thicknesses of metal and polymer layers, and to make conclusion about its resulting sensitivity and working range. It is found that the sensors based on a single metal film and a couple of such films separated by a polymer differ 1 ... 1.3 times in the sensitivity (single metal film demonstrates a more rapid resonant angle shift with analyte refractive index variation). It is established that the employment of Au, Cu, or Ag gives no significant changes in the sensitivity of a two-metal-layer sensor with a polymer, but the widest refractive index registration range may be expected for a Cu-based sensor.


B. Douzi. Protein-protein interactions: Surface plasmon resonance. Methods Mol. Biol. 1615, 257 (2017).

K. Narayan, S.S. Carroll. SPR Screening. In Applied Biophysics for Drug Discovery. 1st edition. Edited by D. Huddler, E.R. Zartler (John Wiley & Sons Ltd, 2017).

W.M.E.M.M. Daniyal, Y.W. Fen, N.A.A. Anas, N.A.S. Omar, N.S.M. Ramdzan, H.Nakajima, M.A. Mahdi. Enhancing the sensitivity of a surface plasmon resonance-based optical sensor for zinc ion detection by the modification of a gold thin film. RSC Advances 9 (71), 41729 (2019).

Y. Song, M. Sun, H. Wu, W. Zhao, Q. Wang. Temperature sensor based on surface plasmon resonance with TiO2-Au-TiO2 triple structure. Materials 15, 7766 (2022).

A.D. Suprun, L.V. Shmeleva. Conditions changing for the surface plasmon resonance realization in optical sensors under the temperature influence. Eur. Phys. J. Plus 137, 580 (2022).

V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Tchackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko. Graphene-protected copper and silver plasmonics. Scientific Reports 4 (1), 5517 (2014).

N. Andam, S. Refki, S. Hayashi, Z. Sekkat. Plasmonic mode coupling and thin film sensing in metal-insulator-metal structures. Scientific Reports 11, 15093 (2021).

K. Tiwari, S. Sharma, N. Hozhabri. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors. AIP Advances 6, 045217 (2016).

V.G. Kravets, P.Y. Kurioz, L.V. Poperenko. Spectral dependence of the magnetic modulation of surface plasmon polaritons in permalloy/noble metal films. J. Opt. Soc. America B 31 (8), 1836 (2014).

P.H. Berning. Theory and calculations of optical thin films. In: Physics of Thin Films. Edited by G. Hass (Academic Press, 1963) [ISBN: 0125330014].

K.M. Mc Peak, S.V. Jayanti, S.J.P. Kress, S. Meyer, S. Iotti, A. Rossinelli, D.J. Norris.. Plasmonic films can easily be better: Rules and recipes. ACS Photonics 2 (3), 326 (2015).

J.B. Maurya, Y.K. Prajapati. Influence of dielectric coating on performance of surface plasmon resonance sensor. Plasmonics 12 (4), 1121 (2016).

L.V. Poperenko, A.L. Yampolskiy, O.V. Makarenko, O.I. Zavalistyi. Optimization of optical parameters of metal-dielectric heterostructures for plasmonic sensors formation. Metallofiz. Noveishie Tekhnol. 41 (6), 751 (2019).




How to Cite

Yampolskyi, A., Makarenko, O., & Zaporoshchenko, D. (2023). Plasmon Resonance Properties of Au, Cu and Ag Multi-layered Structures with P(VDF-TrFE). Ukrainian Journal of Physics, 68(9), 594.



Optics, atoms and molecules