Surface Morphology of the Films of the C60/С70 Fullerene Mixture. Identification of C60 and С70 in the C60/С70 Films Using Absorption Spectra

Authors

  • M.P. Gorishnyi Department of Molecular Photoelectronics, Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.5.318

Keywords:

thin film, surface morphology, absorption spectra, fitting, Gaussians, C60/C70 mixture

Abstract

Films of the C60/C70 mixture are deposited onto various substrates in a vacuum of 6.5 mPa using the thermal sublimation method. The surface morphology of 195-nm C60/C70 films is studied. It is found that polycrystalline and quasi-amorphous C60/C70 films are formed on silica and copper substrates, respectively. The nature of the C60 and C70 absorption bands has been discussed in detail by analyzing the literature and our data. The absorption spectra of the C60 and C70 films and the C60/C70 mixture films are described as the sum of Gaussian functions. The absorption bands of C60 (at 2.474, 3.440, and 3.640 eV) and C70 (at 2.594, 2.804, 3.018, and 3.252 eV) can be used to identify those substances in fullerene mixtures. C60 is found to be the dominant component in the C60/C70 films.

References

H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60: buckminsterfullerene. Nature 318, 162 (1985).

https://doi.org/10.1038/318162a0

A. Graja, J.-P. Farges. Optical spectra of C60 and C70 complexes. Their similarities and differences. Adv. Mater. Opt. Electron. 8, 215 (1998).

https://doi.org/10.1002/(SICI)1099-0712(1998090)8:5<215::AID-AMO338>3.0.CO;2-#

L. Benatto, C.F.N. Marchiori, T. Talka, M. Aramini, N.A.D. Yamamoto, S. Huotari, L.S. Roman, M. Koehler. Comparing C60 and C70 as acceptor in organic solar cells: Influence of the electronic structure and aggregation size on the photovoltaic characteristics. Thin Solid Films. 697, 137827 (2020).

https://doi.org/10.1016/j.tsf.2020.137827

Y. Yi, V. Coropceanu, J.-L. Br'edas. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: Theoretical insight into the impact of interface geometry. J. Am. Chem. Soc. 131, 15777 (2009).

https://doi.org/10.1021/ja905975w

P. Brown, P.V. Kamat. Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell. J. Am. Chem. Soc. 130, 8890 (2008).

https://doi.org/10.1021/ja802810c

H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B 239, 408 (2018).

https://doi.org/10.1016/j.apcatb.2018.07.068

P. Mroz, G.P. Tegos, H. Gali, T.Wharton, T. Sarna, M.R. Hamblin. Photodynamic therapy with fullerenes. Photochem. Photobio. Sci. 6, 1139 (2007).

https://doi.org/10.1039/b711141j

S. Afreen, K. Muthoosamy, S. Manickam, U.Hashim. Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 63, 354 (2015).

https://doi.org/10.1016/j.bios.2014.07.044

S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo. Improved bulk heterojunction organic solar cells employing C70 fullerenes. Appl. Phys. Lett. 94, 223307 (2009).

https://doi.org/10.1063/1.3148664

H. Ajie, M. M. Alvarez, S. J. Anz, R.D. Beck, F. Diederich, K. Fostiropoulos, D.R. Kraetschmer, M. Rubin, K.E. Schriver, D. Sensharma, R.L. Whetten. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630 (1990).

https://doi.org/10.1021/j100387a004

W. Kr¨atschmer, L. Lamb, K. Fostiropoulos, D. R. Huffman. Solid C60: a new form of carbon. Nature 347, 354 (1990).

https://doi.org/10.1038/347354a0

S. Leach, M. Vervloet, A. Despres, E.Breheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, D.R.M. Walton. Electronic spectra and transitions of the fullerene C60. Chem. Phys. 160, 451 (1992).

https://doi.org/10.1016/0301-0104(92)80012-K

S. Mochizuki, M. Sasaki, R. Ruppin. An optical study on C60 vapour, microcrystal beam and film. J. Phys.: Condens. Matter 10, 2347 (1998).

https://doi.org/10.1088/0953-8984/10/10/015

J. Hora, P. Panek, K. Navratil, B. Handlirova, J. Humlicek, H. Sitter, D. Stifter. Optical response of C60 thin films and solutions. Phys. Rev. B 54, 5106 (1996).

https://doi.org/10.1103/PhysRevB.54.5106

W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Quian, W. Li. Optical absorption spectra of C70 thin films. J. Appl. Phys. 80, 459 (1996).

https://doi.org/10.1063/1.362747

G. Orlandi, F. Negri. Electronic states and transitions in C60 and C70 fullerenes. Photochem. Photobio. Sci. 1, 289 (2002).

https://doi.org/10.1039/b200178k

R.C. Haddon, L.E. Brus, K. Ragnavachari. Electronic structure and bonding in icosahedral C60. Chem. Phys. Lett. 125, 459 (1986).

https://doi.org/10.1016/0009-2614(86)87079-8

S. Saito, A. Oshiyama. Cohesive mechanism and energy bands of solid C60. Phys. Rev. Lett. 66, 2637 (1991).

https://doi.org/10.1103/PhysRevLett.66.2637

V. Capozzi, G. Casamassima, G.F. Lorusso et al. Optical spectra and photoluminescence of C60 thin films. Solid State Commun. 98, 853 (1996).

https://doi.org/10.1016/0038-1098(96)00060-9

S. Kazaoui, N. Minami. Optical and electrical properties of C60, C70, nanotubes and endohedral fullerenes. In Macromolecular Science and Engineering. Edited by Y. Tanabe (Springer, 1999).

https://doi.org/10.1007/978-3-642-58559-3_23

T. E. Saraswati, U. H. Setiawan, M. R. Ihsan, I. Isnaeni, Y. Herbani. The study of the optical properties of C60 fullerene in different organic solvents. Open Chem. 17, 1198 (2019).

https://doi.org/10.1515/chem-2019-0117

K. Yabana, G.F. Bertsch. Forbidden transitions in the absorption spectra of C60. Chem. Phys. Lett. 197, 32 (1992).

https://doi.org/10.1016/0009-2614(92)86017-C

J.P. Hare, H.W. Kroto, R. Taylor. Preparation and 'UV/visible spectra of fullerenes C60 and C70. Chem. Phys. Lett. 177, 394 (1991).

https://doi.org/10.1016/0009-2614(91)85072-5

G.E. Scuseria. The equilibrium structure of C70. An ab initio Hartree-Fock study. Chem. Phys. Lett. 180, 451 (1991).

https://doi.org/10.1016/0009-2614(91)85148-P

J. Shumway, S. Satpathy. Polarization-dependent optical properties of C70. Chem. Phys. Lett. 211, 595 (1993).

https://doi.org/10.1016/0009-2614(93)80149-J

R.E. Stratmann, G.E. Scuseria1, M.J. Frisch. Density functional study of the infrared vibrational spectra of C70. J. Raman Spectrosc. 29, 483 (1998).

https://doi.org/10.1002/(SICI)1097-4555(199806)29:6<483::AID-JRS268>3.0.CO;2-Q

Published

2023-07-06

How to Cite

Gorishnyi, M. (2023). Surface Morphology of the Films of the C60/С70 Fullerene Mixture. Identification of C60 and С70 in the C60/С70 Films Using Absorption Spectra. Ukrainian Journal of Physics, 68(5), 318. https://doi.org/10.15407/ujpe68.5.318

Issue

Section

Optics, atoms and molecules