Impact Collision Operator for Unbounded Electrons in a Magnetized Plasma Model

Authors

  • H. Guerrida Faculty of Mathematics and Matter Sciences and LRPPS Laboratory, Kasdi Merbah University
  • K. Chenini Laboratoire MESTEL, Facult´e des Sciences et de la Technologie, Universit´e de Ghardaia
  • M.T. Meftah Faculty of Mathematics and Matter Sciences and LRPPS Laboratory, Kasdi Merbah University
  • S. Douis Faculty of Mathematics and Matter Sciences and LRPPS Laboratory, Kasdi Merbah University
  • D.E. Zenkhri LRPPS Laboratory, Kasdi Merbah University
  • K. Arif LRPPS Laboratory, Kasdi Merbah University

DOI:

https://doi.org/10.15407/ujpe68.8.507

Keywords:

collision operator for electrons, external magnetic field, plasma spectroscopy

Abstract

The shapes of spectral lines in plasmas contain information about plasma parameters and can be used as a diagnostic tool. We have obtained a theoretical expression involving a Meijer function for the plasma collision operator for electrons in the presence of an external magnetic field. We have used the semiclassical theory and the impact approximation which concern the interaction between the emitting systems (hydrogen-like ions in this study) and the plasma electrons. We have calculated the collision operator amplitude for some hydrogen-like ions such as Ar+17, V+22, Cr+23, Fe+25, and Ag+46 for high density intervals between 1018 cm−3 to 1026 cm−3 and at high temperatures between 106 K to 1010 K in a very strong magnetic field between 100 T to 10,000 T. We have applied our results to the Lyman-alpha line, and the comparison with experimental data and some theoretical results gives a good agreement.

References

A. Naam, M. Meftah, S. Douis et al. Spectral line broadening by relativistic electrons in plasmas: Collision operator. Advances in Space Research 54, 1242 (2014).

https://doi.org/10.1016/j.asr.2014.01.010

Sandrine Ferri, Annette Calisti, Caroline MossпїЅ et al. Ion dynamics effect on stark-broadened line shapes: A crosscomparison of various models. Atoms 2 (3), 299 (2014).

https://doi.org/10.3390/atoms2030299

A. Calisti, C. MossпїЅ, S. Ferri et al. Dynamic Stark broadening as the Dicke narrowing effect. Phys. Rev. E 81, 016406 (2010).

https://doi.org/10.1103/PhysRevE.81.016406

A. General, U. Shpenik. Modeling of gas discharge in water vapor. Ukr. J. Phys. 58, 116 (2013).

https://doi.org/10.15407/ujpe58.02.0116

M. Baranger. Simplified quantum-mechanical theory of pressure broadening. Phys. Rev. 111, 481 (1958).

https://doi.org/10.1103/PhysRev.111.481

M. Baranger. Problem of overlapping lines in the theory of pressure broadening. Phys. Rev. 111, 494 (1958).

https://doi.org/10.1103/PhysRev.111.494

S. Alexiou. Collision operator for isolated ion lines in the standard Stark-broadening theory with applications to the Z scaling in the Li isoelectronic series 3P-3S transition. Phys. Rev. A 49, 106 (1994).

https://doi.org/10.1103/PhysRevA.49.106

E. Sadeghzadeh Lari, H. Askari, M. Meftah et al. Calculation of electron density and temperature of plasmas by using new Stark broadening formula of helium lines. High Energy Density Physics 26, 68 (2018).

https://doi.org/10.1016/j.hedp.2018.01.001

K. Arif, M.T. Meftah, K. Chenini et al. Contribution of LiпїЅnard? Wiechert potential to the broadening of spectral lines by electron collisions. Phys. Plasmas 29, 093303 (2022).

https://doi.org/10.1063/5.0085698

P. Zeeman. The effect of magnetisation on the nature of light emitted by a substance. Nature 55, 347 (1897).

https://doi.org/10.1038/055347a0

S. Ferri, O. Peyrusse, A. Calisti. Stark-Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields. Matter Radiat. Extremes 7, 015901 (2022).

https://doi.org/10.1063/5.0058552

A. Raji, R. Rosato, J. Stamm et al. New analysis of Balmer line shapes in magnetic white dwarf atmospheres. Eur. Phys. J. D 75, 1 (2021).

https://doi.org/10.1140/epjd/s10053-021-00067-x

E. Oks. Influence of magnetic-field-caused modifications of trajectories of plasma electrons on spectral line shapes: Applications to magnetic fusion and white dwarfs? J. Quant. Spectrosc. Radiat. Transf. 171, 15 (2016).

https://doi.org/10.1016/j.jqsrt.2015.10.026

E. Oks. Corrigendum to: ?Influence of magnetic-fieldcaused modifications of trajectories of plasma electrons on spectral line shapes: Applications to magnetic fusion and white dwarfs? J. Quant. Spectrosc. Radiat. Transf. 175, 107 (2016).

https://doi.org/10.1016/j.jqsrt.2016.01.036

Ny Kieu, JoпїЅl Rosato, Roland Stamm et al. A new analysis of stark and zeeman effects on hydrogen lines in magnetized da white dwarfs. Atoms 5, 44 (2017).

https://doi.org/10.3390/atoms5040044

S.O. Kepler, I. Pelisoli, S. Jordan et al. Magnetic white dwarf stars in the sloan digital sky survey. Mon. Not. R. Astron. Soc. 429, 2934 (2013).

https://doi.org/10.1093/mnras/sts522

J.D. Landstreet, S. Bagnulo, G.G. Valyavin et al. On the incidence of weak magnetic fields in DA white dwarfs. Astron. Astrophys. 545, 1 (2012).

https://doi.org/10.1051/0004-6361/201219829

J. Rosato, N. Kieu, I. Hannachi et al. Stark-Zeeman line shape modeling for magnetic white dwarf and tokamak edge plasmas: Common challenges. Atoms 5 (4), 36 (2017).

https://doi.org/10.3390/atoms5040036

R. Brauer, S. Wolf, S. Reissl, F. Ober. Magnetic fields in molecular clouds: Limitations of the analysis of Zeeman observations. Astron. Astrophys. 601, 1 (2017).

https://doi.org/10.1051/0004-6361/201629001

L. Godbert-Mouret, M. Koubitia, R. Stamm et al. Spectroscopy of magnetized plasmas. Q. R. S. T. 71, 365 (2001).

https://doi.org/10.1016/S0022-4073(01)00082-6

E. Stambulchik, Y. Maron. Zeeman effect induced by intense laser light. Phys. Rev. Lett. E 113, 083002 (2014).

https://doi.org/10.1103/PhysRevLett.113.083002

S. Fadhel, M.T. Meftah, K. Chenini. Quantum dynamics of hydrogen-like ions in a spatially nonuniform magnetic field: A possible application to fusion plasma. Atoms 6, 1 (2022).

https://doi.org/10.3390/atoms10010020

O. Loginov, O. Cheremnykh, V. Krivodubskij et al. Kinematic dynamo model of a solar magnetic cycle. Ukr. J. Phys. 67, 796 (2022).

https://doi.org/10.15407/ujpe67.11.796

S. Nasrin, M. Bose. Effect of two different electron temperatures in auroral ionosphere. Ukr. J. Phys. 67, 136 (2022).

https://doi.org/10.15407/ujpe67.2.136

J. Rosato, S. Ferri, R. Stamm. Influence of helical trajectories of perturbers on Stark Line shapes in magnetized plasmas. Atoms 6 (1), 12 (2018).

https://doi.org/10.3390/atoms6010012

S. Alexiou. Line shapes in a magnetic field: Trajectory modifications I: Electrons. Atoms 7 (2), 52 (2019).

https://doi.org/10.3390/atoms7020052

S. Alexiou. Line Shapes in a magnetic field: Trajectory modifictions II: Full collision-time statistics. Atoms 7 (4), 94 (2019).

https://doi.org/10.3390/atoms7040094

M.G. Haines, P.D. LePell, C.A. Coverdale et al. Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2 × 10^9 Kelvin. Phys. Rev. Lett. 96, 075003 (2006).

https://doi.org/10.1103/PhysRevLett.96.075003

D. Zenkhri, M. Meftah, F. Khelfaoui. Relativistic calculation of spectral line broadening by electron collisions in plasmas: Case of hydrogenic ions. Advances in Space Research 69, 3553 (2022).

https://doi.org/10.1016/j.asr.2022.02.007

Downloads

Published

2023-10-02

How to Cite

Guerrida, H., Chenini, K., Meftah, M., Douis, S., Zenkhri, D., & Arif, K. (2023). Impact Collision Operator for Unbounded Electrons in a Magnetized Plasma Model. Ukrainian Journal of Physics, 68(8), 507. https://doi.org/10.15407/ujpe68.8.507

Issue

Section

Plasma physics