Effect of Sheared Magnetic Field on E × B Drift Instability in Plasma

Authors

  • S. Nasrin Department of Physics, Jadavpur University
  • S. Das Department of Mathematics, Prince Georges Community College
  • M. Bose Department of Physics, Jadavpur University

DOI:

https://doi.org/10.15407/ujpe68.7.448

Keywords:

magnetic shear, drift instability, collision frequency, density gradient

Abstract

The influence of the magnetic shear on ion drift waves has been investigated for plasmas in the plane slab geometry with a density gradient. A differential equation is derived to describe the mode structure along the density gradient. The magnetic shear localizes the mode around a mode-rational surface, which is perpendicular to the magnetic field. The non-local growth rate turned out to be smaller as compared to the shearless one. The magnetic shear stabilizes long wavelength modes (kρi < 1 ), whereas it destabilizes, as the mode tends toward the short wavelength region, where the density gradient provides a destabilizing effect for the magnetic shear-driven resistive drift mode. However, the effect due to the collision frequency is significantly low in our analysis. The combined effects of E×B flows and the magnetic shear enhance the confinement over a narrow radial region with an internal transport barrier, where stability is attained.

References

N.A. Krall, A. Simon, W.B. Thomson. Advances in Plasma Physics (New York, 1968).

C.I. Weng, C.S. Ma. Linear theory of the E × B instability. Chinese J. Phys. 13 (1), 44 (1975).

H. Romero, G. Ganguli, Y.C. Lee, P.J. Palmadesso. Electron-ion hybrid instabilities driven by velocity shear in a magnetized plasma. Phys. Fluids B: Plasma Phys. 4 (7), 1708 (1992).

https://doi.org/10.1063/1.860028

R.J. Groebner, K.H. Burrell, R.P. Seraydarian. Role of edge electric field and poloidal rotation in the L-H transition. Phys. Rev. Lett. 64 (25), 3015 (1990).

https://doi.org/10.1103/PhysRevLett.64.3015

G. Ganguli, Y.C. Lee, P.J. Palmadesso. Kinetic theory for electrostatic waves due to transverse velocity shears. The Physics of Fluids 31 (4), 823 (1988).

https://doi.org/10.1063/1.866818

S. Sen, M.G. Rusbridge, R.J. Hastie. Collisionless drift waves in the H mode edge (plasma). Nuclear Fusion 34 (1), 87 (1994).

https://doi.org/10.1088/0029-5515/34/1/I06

C.R. De Vore. Current-driven resistive drift instabilities in sheared magnetic fields. Nuclear Fusion 21 (1), 105 (1981).

https://doi.org/10.1088/0029-5515/21/1/011

L. Chen, P.N. Guzdar, J.Y. Hsu, P.K. Kaw, C. Oberman, R. White. Theory of dissipative drift instabilities in sheared magnetic fields. Nuclear Fusion 19 (3), 373 (1979).

https://doi.org/10.1088/0029-5515/19/3/009

W. Horton. Drift waves and transport. Rev. Mode. Phys. 71 (3), 735 (1999).

https://doi.org/10.1103/RevModPhys.71.735

J.D. Huba, S.L. Ossakow, P. Satyanarayana, P.N. Guzdar. Linear theory of the E × B instability with an inhomogeneous electric field. JGR: Space Physics 88 (A1), 425 (1983).

https://doi.org/10.1029/JA088iA01p00425

M.A. Pedrosa et al. Sheared flows and turbulence in fusion plasmas. Plasma Phys. Controll. Fusion 49 (12B), B303 (2007).

https://doi.org/10.1088/0741-3335/49/12B/S28

V. Rozhansky, E. Kaveeva, S. Voskoboynikov, D. Coster, X. Bonnin, R. Schneider. Modelling of electric fields in tokamak edge plasma and LH transition. Nuclear Fusion 42 (9), 309 (2002).

https://doi.org/10.1088/0029-5515/42/9/309

V.N. Rai, F.Y. Yueh, J.P. Singh. Laser-induced breakdown spectroscopy of liquid samples. Laser Induced Breakdown Spectroscopy (Elsevier Amsterdam, 2007) [ISBN: 9780080551012].

M. Greenwald. Density limits in toroidal plasmas. Plasma Phys. Controll. Fusion 44 (8), R27 (2002).

https://doi.org/10.1088/0741-3335/44/8/201

B.A. Carreras, L. Garcia, M.A. Pedrosa, C. Hidalgo. Critical transition for the edge shear layer formation: Comparison of model and experiment. Phys. Plasmas 13 (12), 122509 (2006).

https://doi.org/10.1063/1.2405344

M.A. Pedrosa et al. Threshold for sheared flow and turbulence development in the TJ-II stellarator. Plasma Phys. Controll. Fusion 47 (6), 777 (2005).

https://doi.org/10.1088/0741-3335/47/6/004

R. Bharuthram, M.A. Hellberg, R.D. Lee. The cross field current-driven ion-acoustic instability in a collisional plasma. Theor. Nucl. Phys. 28 (3), 385 (1982).

https://doi.org/10.1017/S0022377800000374

M. Gregoire, P. Rolland. Shear stabilization of drift dissipative instabilities. Nuclear Fusion 13 (6), 867 (1973).

https://doi.org/10.1088/0029-5515/13/6/011

C.L. Chang, J.F. Drake, N.T. Gladd, C.S. Liu. Unstable dissipative drift modes in a sheared magnetic field. The Physics of Fluids 23 (10), 1998 (1980).

https://doi.org/10.1063/1.862876

J. Boedo et al. Enhanced particle confinement and turbulence reduction due to E × B shear in the TEXTOR tokamak. Nuclear Fusion 40 (7), 1397 (2000).

https://doi.org/10.1088/0029-5515/40/7/309

S. Khrapak, V. Yaroshenko. Ion drift instability in a strongly coupled collisional complex plasma. Plasma Phys. Controll. Fusion 62 (10), 105006 (2020).

https://doi.org/10.1088/1361-6587/aba7f8

R.J. Taylor et al. H-mode behavior induced by cross-field currents in a tokamak. Phys. Rev. Lett. 63 (21), 2365 (1989).

https://doi.org/10.1103/PhysRevLett.63.2365

Y. Zhang, S.I. Krasheninnikov, A.I. Smolyakov. Different responses of the Rayleigh-Taylor type and resistive drift wave instabilities to the velocity shear. Physics of Plasmas 27 (2), 020701 (2020).

https://doi.org/10.1063/1.5130409

P.J. Catto et al. Parallel velocity shear instabilities in an inhomogeneous plasma with a sheared magnetic field. The Physics of Fluids 16 (10), 1719 (1973).

https://doi.org/10.1063/1.1694200

R. Singh, R. Singh, H. Jhang, P.H. Diamond. Momentum transport in the vicinity of qmin in reverse shear tokamaks due to ion temperature gradient turbulence. Phys. Plasmas 21 (1), 012302 (2014).

https://doi.org/10.1063/1.4861625

S. Ku et al. Physics of intrinsic rotation in flux-driven ITG turbulence. Nuclear Fusion 52 (6), 063013 (2012).

https://doi.org/10.1088/0029-5515/52/6/063013

R.L. Tanna et al. Overview of operation and experiments in the ADITYA-U tokamak. Nuclear Fusion 59 (11), 112006 (2019).

T. Ohkawa, R.L. Miller. Creation of localized sheared flow by ion trapping. Phys. Plasmas 12 (9), 094506 (2005).

https://doi.org/10.1063/1.2047629

M. Okabayashi, V. Arunasalam. Nuclear Fusion 17 (3), 497 (1977).

https://doi.org/10.1088/0029-5515/17/3/010

W. Tang, R. White, P. Guzdar. Impurity effects on iondrift-wave eigenmodes in a sheared magnetic field. The Physics of Fluids 23 (1), 167 (1980).

https://doi.org/10.1063/1.862835

Y. Saxena, P. John. Dispersion and spectral characteristics of crossfield instability in collisional magnetoplasma. Pramana 8 (2), 123 (1977).

https://doi.org/10.1007/BF02868062

J. C. Perez, W. Horton, K. Gentle, W. Rowan, K. Lee, R.B. Dahlburg. Drift wave instability in the Helimak experiment. Phys. Plasmas 13 (3), 032101 (2006).

https://doi.org/10.1063/1.2168401

K.H. Burrel. Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices Phys. Plasmas 4 (5), 1499 (1997).

https://doi.org/10.1063/1.872367

P. Satyanarayana, G. Ganguli, S. Ossakow. Influence of magnetic shear on the collisional current driven ion cyclotron instability. Plasma Phys. Controll. Fusion 26 (11), 1333 (1984).

https://doi.org/10.1088/0741-3335/26/11/007

Downloads

Published

2023-09-08

How to Cite

Nasrin, S., Das, S., & Bose, M. (2023). Effect of Sheared Magnetic Field on E × B Drift Instability in Plasma. Ukrainian Journal of Physics, 68(7), 448. https://doi.org/10.15407/ujpe68.7.448

Issue

Section

Plasma physics