The Role of Air in Laser-Induced Thermal Emission of Surface Layers of Porous Carbon Materials

Authors

  • S.E. Zelensky Taras Shevchenko National University of Kyiv
  • O.S. Kolesnik Taras Shevchenko National University of Kyiv
  • V.P. Yashchuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe68.10.652

Keywords:

laser-induced thermal emission, porous carbon, air

Abstract

The influence of the surrounding air on the amplitude and shape of thermal radiation pulses (at a wavelength of 430 nm) during the heating of the surface layer of a porous carbon material (to temperatures of the order of 2000–3000 K) by the radiation of a Q-switched neodymium laser is studied. When the pressure of the surrounding air is reduced to forevacuum conditions, the experiments showed a one-and-a-half-fold increase in the amplitude of pulsed signals of thermal radiation and an increase in the decay time of the glow by about a third. Numerical calculations of the dynamics of the temperature field in the surface layer of the material during the irradiation by nanosecond laser pulses are carried out. An improved model is used in the calculations, which accounts for (i) the porosity of the material and (ii) the temperature dependence of the coefficients of thermal conductivity and the heat capacities of carbon and air. To calculate the thermal conductivity of the porous material, a model of a cubic array of intersecting square rods is used. The satisfactory consistency of calculation results with experimental data is obtained. The above-mentioned improvements of the calculation model made it possible to reconcile the estimates of the thermal characteristics of surface layers of carbon, obtained from the emission decay data, with the reference data published in the literature.

References

X. Xu, C.P. Grigoropoulos, R.E. Russo. Measurement of solid-liquid interface temperature during pulsed excimer laser melting of polycrystalline silicon films. Appl. Phys. Lett. 65, 1745 (1994).

https://doi.org/10.1063/1.113044

T. Borca-Tasciuc, G. Chen. Temperature measurement of fine wires by photothermal radiometry. Rev. Sci. Instrum. 68, 4080 (1997).

https://doi.org/10.1063/1.1148350

L. Fedorenko, V. Naumov, V. Plakhotny, S. Svechnikov, N. Yusupov. Laser-thermal diagnostics (LTD) of hidden inhomogeneities in multi-layer structures. Proc. SPIE 4430, 572 (2001).

https://doi.org/10.1117/12.432894

A. Tsuge, Y. Uwamino, T. Ishizuka. Applications of laserinduced thermal emission spectroscopy to various samples. Appl. Spectr. 43, 1145 (1989).

https://doi.org/10.1366/0003702894203598

D. Kruse, H. Prekel, G. Goch, H.G. Walther. Correlation between hardening depth and thermal parameters based on photothermal measurements. Proc. Estonian Acad. Sci. Engineering 13, 423 (2007).

https://doi.org/10.3176/eng.2007.4.14

R. Fuente, A. Mendioroz, E. Apinaniz, A. Salazar. Simultaneous measurement of thermal diffusivity and optical absorption coefficient of solids using PTR and PPE: A comparison. Int J. Thermophys. 33, 1876 (2012).

https://doi.org/10.1007/s10765-012-1264-3

N.J. Galan-Freyle, L.C. Pacheco-Londono, A.M. FigueroaNavedo, S.P. Hernandez-Rivera. Standoff detection of highly energetic materials using laser-induced thermal excitation of infrared emission. Appl. Spectr. 69, 535 (2015).

https://doi.org/10.1366/14-07501

X. Xu, C.P. Grigoropoulos, R.E. Russo. Nanosecond-timeresolution thermal emission measurement during pulsed excimer-laser interaction with materials. Appl. Phys. A 62, 51 (1996).

https://doi.org/10.1007/BF01568087

P. Roura, J. Costa, M.L. Miguel, B. Garrido, J. Fort, J.R. Morante, E. Bertran. Black-body emission from nanostructured materials. J. Luminescence 80, 519 (1999).

https://doi.org/10.1016/S0022-2313(98)00166-5

S. Zelensky, L. Poperenko, A. Kopyshinsky, K. Zelenska. Nonlinear characteristics of laser-induced incandescence of rough carbon surfaces. Nonlinear Optics and Applications VI. Proc. SPIE 8434, 84341H-1 (2012).

https://doi.org/10.1117/12.921999

S. Zelensky, K. Zelenska. Laser-induced incandescence of carbon surface: a method for temperature estimation. Nonlinear Optics and Applications VII. Proc. SPIE 8772, 87721P-1 (2013).

https://doi.org/10.1117/12.2017091

K. Zelenska, A. Kopyshinsky, L. Poperenko. Laser-induced incandescence of carbon surface at various values of ambient air pressure. In: Photonics Technologies. Fotonica AEIT Italian Conference (2014).

https://doi.org/10.1109/Fotonica.2014.6843884

K. Zelenska, S. Zelensky, A. Kopyshinsky, S. Rozouvan, T. Aoki. Laser-induced incandescence of rough carbon surfaces. Jpn J. Appl. Phys. Conf. Proc. 4, 011106-1 (2016).

https://doi.org/10.56646/jjapcp.4.0_011106

K. Zelenska, O. Tkach, S. Zelensky, O. Kolesnik, T. Aoki. Application of laser-induced thermal emission in imaging of rough surface relief. Thai J. Nanosci. Nanotechnol. 6, 16 (2021).

V. Karpovych, O. Tkach, K. Zelenska, S. Zelensky, T. Aoki. Laser-induced thermal emission of rough carbon surfaces. J. Laser Appl. 32, 012010 (2020).

https://doi.org/10.2351/1.5131189

V. Karpovych, K. Zelenska, S. Yablochkov, S. Zelensky, T. Aoki. Evolution of laser-induced incandescence of porous carbon materials under irradiation by a sequence of laser pulses. Thai J. Nanosci. Nanotechnol. 2, No. 2, 14 (2017).

S.E. Zelensky, T. Aoki. Decay kinetics of thermal radiation emitted by surface layers of carbon materials under pulsed laser excitation. Optics and Spectroscopy 127, 931 (2019).

https://doi.org/10.1134/S0030400X19110298

A.V. Kopyshinsky, S.E. Zelensky, E.A. Gomon, S.G. Rozouvan, A.S. Kolesnik. Laser-induced incandescence of silicon surface under 1064 nm excitation. Semicond. Phys., Quant. Electron. and Optoelectron. 15, 376 (2012).

https://doi.org/10.15407/spqeo15.04.376

M. Kokhan, I. Koleshnia, S. Zelensky, Y. Hayakawa, T. Aoki. Laser-induced incandescence of GaSb/InGaSb surface layers. Optics and Laser Technology 108, 150 (2018).

https://doi.org/10.1016/j.optlastec.2018.06.053

S.De Iuliis, F. Cignoli, S. Maffi, G. Zizak. Influence of the cumulative effects of multiple laser pulses on laser-induced incandescence signals from soot. Appl. Phys. B 104, 321 (2011).

https://doi.org/10.1007/s00340-011-4535-y

K. Pietrak, T.S. Wisniewski. A review of models for effective thermal conductivity of composite materials. J. Power Technologies 95, 14 (2015).

S.Q. Zeng, A. Hunt, R. Greif. Geometric structure and thermal conductivity of porous medium silica aerogel. ASME J. Heat Transfer 117, 1055 (1995).

https://doi.org/10.1115/1.2836281

J. Hilsenrath, C.W. Beckett, W.S. Benedict, L. Fano, H.J. Hoge, J.F. Masi, R.L. Nuttall, Y.S. Touloukian, H.W. Woolley. Tables of Thermal Properties of Gases. National Bureau of Standards Circular (NIST Pubs., 1955).

https://doi.org/10.1149/1.2430297

K. Kadoya, N. Matsunaga, A. Nagashima. Viscosity and thermal conductivity of dry air in the gaseous phase. J. Phys. and Chem. Reference Data 14, 947 (1985).

https://doi.org/10.1063/1.555744

N.B. Vargaftik, L.P. Filippov, A.A. Tarzymanov, E.E. Totsky. Reference Book on Thermal Conductivity of Liquids and Gases (Energoatomizdat, 1990) [ISBN: 5-283-00139-3] (in Russian).

A. Savvatimskiy. Resistivity and Heat Capacity for Solid Graphite up to 3000 K. In: Carbon at High Temperatures. Springer Series in Materials Science (Springer, 2015), p. 134.

https://doi.org/10.1007/978-3-319-21350-7_2

C.Y. Ho, R.W. Powell, P.E. Liley. Thermal conductivity of the elements: a comprehensive review. J. Phys. and Chem. Reference Data 3, Suppl. No. 1 (1974).

Published

2023-11-29

How to Cite

Zelensky, S., Kolesnik, O., & Yashchuk, V. (2023). The Role of Air in Laser-Induced Thermal Emission of Surface Layers of Porous Carbon Materials. Ukrainian Journal of Physics, 68(10), 652. https://doi.org/10.15407/ujpe68.10.652

Issue

Section

Optics, atoms and molecules