Magnetocaloric Effect in the One-Dimensio¬nal Spin-1/2 XX Model with Two Periodically Varying g-Factors
DOI:
https://doi.org/10.15407/ujpe68.7.488Keywords:
one-dimensional quantum spin models, g-factor, Jordan–Wigner fermionization, magnetocaloric effect, quantum phase transitionAbstract
The influence of a non-uniformity of the g-factors with period two on the magnetocaloric effect in the spin-1/2 XX chain in the transverse field has been studied. By means of the Jordan–Wigner transformation, the problem is reduced to the Hamiltonian of noninteracting spinless fermions and solved exactly. The variation of isentropes and the field dependences of the magnetic Gruneisen ratio with a change in the ratio g2/g1 are analyzed. Main attention is paid to the low-temperature region. Distinctions among the magnetocaloric effect manifestations in the cases where the g-factors have different or identical signs, or if either of g-factors equals zero, are demonstrated.
References
P. Bhatt, N. Thakur, M.D. Mukadam, S.S. Meena, S.M. Yusuf. One-dimensional single-chain molecular magnet with a cross-linked Π–Π coordination network [{CoII(Δ)CoII(Λ)}(ox)2(phen)2]n. J. Phys. Chem. C 118, 1864 (2014).
https://doi.org/10.1021/jp411302d
E. Coronado, M. Drillon, A. Fuertes, D. Beltran, A. Mosset, J. Galy. Structural and magnetic study of Ni2(EDTA)(H2O)4 · 2H2O. Alternating Land´e factors in a two-sublattice 1D system. J. Am. Chem. Soc. 108, 900 (1986).
https://doi.org/10.1021/ja00265a009
W.-G. Yin, X. Liu, A.M. Tsvelik, M.P.M. Dean, M.H. Upton, J. Kim, D. Casa, A. Said, T. Gog, T.F. Qi, G. Cao, J.P. Hill. Ferromagnetic exchange anisotropy from antiferromagnetic superexchange in the mixed 3d − 5d transitionmetal compound Sr3CuIrO6. Phys. Rev. Lett. 111, 057202 (2013).
W.-G. Yin, C.R. Roth, A.M. Tsvelik. Spin Frustration and a “Half Fire, Half Ice” Critical Point from Nonuniform g-Factors. [https://arxiv.org/abs/1510.00030].
F. Souza, M.L. Lyra, J. Streˇcka, M.S.S. Pereira. Magnetization processes and quantum entanglement in a spin-1/2 Ising–Heisenberg chain model of a heterotrimetallic Fe–Mn–Cu coordination polymer. J. Magn. Magn. Mater. 471, 423 (2019).
https://doi.org/10.1016/j.jmmm.2018.09.121
W. Van den Heuvel, L.F. Chibotaru. Dysprosium-based experimental representatives of an Ising–Heisenberg chain and a decorated Ising ring. Phys. Rev. B 82, 174436 (2010).
https://doi.org/10.1103/PhysRevB.82.174436
M. Oshikawa, I. Affleck. Field-induced gap in S -1/2 antiferromagnetic chains. Phys. Rev. Lett. 79, 2883 (1997).
https://doi.org/10.1103/PhysRevLett.79.2883
I. Affleck, M. Oshikawa. Field-induced gap in Cu benzoate and other S = 1/2 antiferromagnetic chains. Phys. Rev. B 60, 1038 (1999).
https://doi.org/10.1103/PhysRevB.60.1038
M. Kenzelmann, C. D. Batista, Y. Chen, C. Broholm, D.H. Reich, S. Park, Y. Qiu. S = 1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice. Phys. Rev. B 71, 094411 (2005).
https://doi.org/10.1103/PhysRevB.71.094411
O. Derzhko. Jordan-Wigner fermionization for spin-1/2 systems in two dimensions: A brief review. J. Phys. Stud. 5, 49 (2001).
https://doi.org/10.30970/jps.05.49
E. Lieb, T. Schultz, D. Mattis. Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407 (1961).
https://doi.org/10.1016/0003-4916(61)90115-4
V.M. Kontorovich, V.M. Tsukernik. Magnetic properties of a spin array with two sublattices. Sov. Phys. JETP 26, 687 (1968).
T. Krokhmalskii, T. Verkholyak, O. Baran, V. Ohanyan, O. Derzhko. Spin-1/2 XX chain in a transverse field with regularly alternating g factors: Static and dynamic properties. Phys. Rev. B 102, 144403 (2020).
https://doi.org/10.1103/PhysRevB.102.144403
O. Derzhko, T. Krokhmalskii. Dynamic structure factor of the spin-1/2 transverse Ising chain. Phys. Rev. B 56, 11659 (1997).
https://doi.org/10.1103/PhysRevB.56.11659
O. Derzhko, T. Krokhmalskii, J. Stolze. Dynamics of the spin-1/2 isotropic XY chain in a transverse field. J. Phys. A 33, 3063 (2000).
https://doi.org/10.1088/0305-4470/33/16/301
J.P. de Lima, L.L. Gon¸calves, T.F.A. Alves. Anisotropic XY model on the inuniform periodic chain. Phys. Rev. B 75, 214406 (2007).
https://doi.org/10.1103/PhysRevB.75.214406
T. Antal, Z. R´acz, A. R´akos, G.M. Sch¨utz. Isotropic transverse XY chain with energy and magnetization currents. Phys. Rev. E 57, 5184 (1998).
https://doi.org/10.1103/PhysRevE.57.5184
I. Titvinidze, G. Japaridze. Phase diagram of the spin S = 1/2 extended XY model. Eur. Phys. J. B 32, 383 (2003).
https://doi.org/10.1140/epjb/e2003-00113-8
A.A. Zvyagin. Quantum phase transitions in low-dimensional quantum spin systems with incommensurate magnetic structures. Phys. Rev. B 72, 064419 (2005).
https://doi.org/10.1103/PhysRevB.72.064419
P. Lou. Quantum phase transition in a solvable spin model. Phys. Rev. B 72, 064435 (2005).
https://doi.org/10.1103/PhysRevB.72.064435
T. Krokhmalskii, O. Derzhko, J. Stolze, T. Verkholyak. Dynamic properties of the spin-1/2 XY chain with threesite interactions. Phys. Rev. B 77, 174404 (2008).
https://doi.org/10.12693/APhysPolA.113.437
M. Topilko, T. Krokhmalskii, O. Derzhko, V. Ohanyan. Magnetocaloric effect in spin-1/2 XX chains with three-spin interactions. Eur. Phys. J. B 85, 278 (2012).
https://doi.org/10.1140/epjb/e2012-30359-8
O. Menchyshyn, V. Ohanyan, T. Verkholyak, T. Krokhmalskii, O. Derzhko. Magnetism-driven ferroelectricity in spin-1/2 XY chains. Phys. Rev. B 92, 184427 (2015).
https://doi.org/10.1103/PhysRevB.92.184427
O.R. Baran. Energy flux effect in the one-dimensional spin-1/2 XX model of magnetoelectric. Lagrange multiplier method. Ukr. J. Phys. 66, 890 (2021).
https://doi.org/10.15407/ujpe66.10.890
H. Katsura, N. Nagaosa, A.V. Balatsky. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
https://doi.org/10.1103/PhysRevLett.95.057205
M. Brockmann, A. Kl¨umper, V. Ohanyan. Exact description of magnetoelectric effect in the spin-1/2 XXZ chain with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 87, 054407 (2013).
https://doi.org/10.1103/PhysRevB.87.054407
O. Baran, V. Ohanyan, T. Verkholyak. Spin-1/2 XY chain magnetoelectric: Effect of zigzag geometry. Phys. Rev. B 98, 064415 (2018).
https://doi.org/10.1103/PhysRevB.98.064415
V. Ohanyan. Influence of XY anisotropy on a magnetoelectric effect in spin-1/2 XY chain in a transverse magnetic field. Condens. Matter Phys. 23, 43704 (2020).
https://doi.org/10.5488/CMP.23.43704
V. Eisler, Z. R´acz, F. van Wijland. Magnetization distribution in the transverse Ising chain with energy flux. Phys. Rev. E 67, 056129 (2003).
https://doi.org/10.1103/PhysRevE.67.056129
J. Li, S. Lei. Thermodynamic properties of the spin-1/2 ferromagnetic Heisenberg chain with long-range interactions. Phys. Lett. A 372, 4086 (2008).
https://doi.org/10.1016/j.physleta.2008.03.005
J.-S. Caux, F.H.L. Essler, U. L¨ow. Dynamical structure factor of the anisotropic Heisenberg chain in a transverse field. Phys. Rev. B 68, 134431 (2003).
https://doi.org/10.1103/PhysRevB.68.134431
R. Hagemans, J.-S. Caux, U. L¨ow. Gapped anisotropic spin chains in a field. Phys. Rev. B 71, 014437 (2005).
https://doi.org/10.1103/PhysRevB.71.014437
H.H. Fu, K.L. Yao, Z.L. Liu. Thermodynamic properties of a spin-1/2 diamond chain as a model for a molecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2. Phys. Rev. B 73, 104454 (2006).
T. Verkholyak, J. Streˇcka, M. Jaˇsˇcur, J. Richter. Magnetic properties of the quantum spin-1/2 XX diamond chain: the Jordan-Wigner approach. Eur. Phys. J. B 80, 433 (2011).
https://doi.org/10.1140/epjb/e2011-10681-5
Y.R. Wang. Ground state of the two-dimensional antiferromagnetic Heisenberg model studied using an extended Wigner-Jordon transformation. Phys. Rev. B 43, 3786 (1991).
https://doi.org/10.1103/PhysRevB.43.3786
E. Fradkin. Jordan-Wigner transformation for quantumspin systems in two dimensions and fractional statistics. Phys. Rev. Lett. 63, 322 (1989).
https://doi.org/10.1103/PhysRevLett.63.322
A. Lopez, A.G. Rojo, E. Fradkin. Chern-Simons theory of the anisotropic quantum Heisenberg antiferromagnet on a square lattice. Phys. Rev. B 49, 15139 (1994).
https://doi.org/10.1103/PhysRevB.49.15139
O. Derzhko, T. Verkholyak, R. Schmidt, J. Richter. Square-lattice s = 1/2 XY model and the Jordan-Wigner fermions: The ground-state and thermodynamic properties. Physica A 320, 407 (2003).
https://doi.org/10.1016/S0378-4371(02)01595-9
O. Derzhko, T. Krokhmalskii. Dynamics of zz spin correlations in the square-lattice spin-1/2 isotropic XY model. Physica B 337, 357 (2003).
https://doi.org/10.1016/S0921-4526(03)00427-7
O. Derzhko, T. Krokhmalskii. Jordan-Wigner approach to dynamic correlations in 2D spin-1/2 models. Czech. J. Phys. 55, 601 (2005).
https://doi.org/10.1007/s10582-005-0064-4
O.R. Baran, T. M. Verholyak Ground state of twodimensional spin-1/2 J1 − J2 Heisenberg models in the Jordan-Wigner fermionization approach. J. Phys. Stud. 19, 4701 (2015).
https://doi.org/10.30970/jps.19.4701
O.R. Baran, T.M. Verkholyak. Two-dimensional spin-1/2 J1 −J′1−J2 Heisenberg model within Jordan-Wigner transformation. Ukr. J. Phys. 61, 597 (2016).
https://doi.org/10.15407/ujpe61.07.0597
T. Jolicœur, G. Misguich, S.M. Girvin. Magnetization process from Chern-Simons theory and its application to SrCu2(BO3)2. Progr. Theor. Phys. Suppl. 145, 76 (2002).
https://doi.org/10.1143/PTPS.145.76
D. Eliezer, G. Semenoff. Anyonization of lattice Chern-Simons theory. Ann. Phys. 217, 66 (1992).
https://doi.org/10.1016/0003-4916(92)90339-N
L. Canov´a, J. Streˇcka, T. Luˇcivjansk´y. Exact solution of the mixed spin-1/2 and spin-S Ising–Heisenberg diamond chain. Condens. Matter Phys. 12, 353 (2009).
https://doi.org/10.5488/CMP.12.3.353
C. Trippe, A. Honecker, A. Kl¨umper, V. Ohanyan. Exact calculation of the magnetocaloric effect in the spin-1/2 XXZ chain. Phys. Rev. B 81, 054402 (2010).
https://doi.org/10.1103/PhysRevB.81.054402
B. Wolf, A. Honecker, W. Hofstetter, U. Tutsch, M. Lang. Cooling through quantum criticality and many-body effects in condensed matter and cold gases. Int. J. Mod. Phys. B 28, 1430017 (2014).
https://doi.org/10.1142/S0217979214300175
E. Warburg. Magnetische Untersuchungen. Ann. Phys. (Leipzig) 13, 141 (1881).
https://doi.org/10.1002/andp.18812490510
W.F. Giauque, D.P. MacDougall. Attainment of temperatures below 1∘ absolute by demagnetization of Gd2(SO4)3 · 8H2O. Phys. Rev. 43, 768 (1933).
A.S. Oja, O.V. Lounasmaa. Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures. Rev. Mod. Phys. 69, 1 (1997).
https://doi.org/10.1103/RevModPhys.69.1
P. Strehlow, H. Nuzha, E. Bork. Construction of a nuclear cooling stage. J. Low. Temp. Phys. 147, 81 (2007).
https://doi.org/10.1007/s10909-006-9300-y
A.A. Zvyagin. Magnetic ordering of anisotropic magnets due to rotation of the magnetic field. Low Temp. Phys. 43, 1194 (2017).
https://doi.org/10.1063/1.5001296
K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005).
https://doi.org/10.1088/0034-4885/68/6/R04
A.M. Tishin, Y.I. Spichkin. The Magnetocaloric Effect and its Applications (Institute of Physics, 2003).
https://doi.org/10.1887/0750309229
S. Sachdev. Quantum Phase Transitions (Cambridge University Press, 2011).
https://doi.org/10.1017/CBO9780511973765
B. Wolf, Y.K. Tsui, D. Jaiswal-Nagar, U. Tutsch, A. Honecker, K. Removi'c-Langer, G. Hofmann, A. Prokofiev, W. Assmus, G. Donath, M. Lang. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl. Acad. Sci. USA 108, 6862 (2011).
https://doi.org/10.1073/pnas.1017047108
M.E. Zhitomirsky, A. Honecker. Magnetocaloric effect in one-dimensional antiferromagnets. J. Stat. Mech.: Theor. Exp. 2004, P07012 (2004).
https://doi.org/10.1088/1742-5468/2004/07/P07012
J. Streˇcka, O. Rojas, T. Verkholyak, M.L. Lyra. Magnetization process, bipartite entanglement, and enhanced magnetocaloric effect of the exactly solved spin-1/2 Ising–Heisenberg tetrahedral chain. Phys. Rev. E 89, 022143 (2014).
https://doi.org/10.1103/PhysRevE.89.022143
L. G´alisov´a, J. Streˇcka. Magnetic Gr¨uneisen parameter and magnetocaloric properties of a coupled spin–electron double-tetrahedral chain. Phys. Lett. A 379, 2474 (2015).
https://doi.org/10.1016/j.physleta.2015.07.007
L. G´alisov´a, J. Streˇcka. Vigorous thermal excitations in a double-tetrahedral chain of localized Ising spins and mobile electrons mimic a temperature-driven first-order phase transition. Phys. Rev. E 91, 022134 (2015).
https://doi.org/10.1103/PhysRevE.91.022134
L. G´alisov´a. Magnetocaloric effect in the symmetric spin-1/2 diamond chain with different Land´e g-factors of the Ising and Heisenberg spins. Acta Mech. Slovac. 19, 46 (2015).
https://doi.org/10.21496/ams.2015.023
H.A. Zad, N. Ananikian, M. Jaˇsˇcur. Single-ion anisotropy effects on the demagnetization process of the alternating weak-rung interacting mixed spin-(1/2, 1) Ising–Heisenberg double saw-tooth ladders. Phys. Scripta 95, 095702 (2020).
https://doi.org/10.1088/1402-4896/aba663
L. G´alisov´a. Reentrant phenomenon and inverse magnetocaloric effect in a generalized spin-(1/2, s) Fisher’s superexchange antiferromagnet. J. Phys.: Condens. Matter 28, 476005 (2016).
https://doi.org/10.1088/0953-8984/28/47/476005
L. G´alisov´a, J. Streˇcka. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field. Physica E 99, 244 (2018).
https://doi.org/10.1016/j.physe.2018.01.017
J. Streˇcka, K. Karl’ov´a. Weak singularities of the isothermal entropy change as the smoking gun evidence of phase transitions of mixed-spin Ising model on a decorated square lattice in transverse field. Entropy 23, 1533 (2021).
https://doi.org/10.3390/e23111533
L. Zhu, M. Garst, A. Rosch, Q. Si. Universally diverging Gr¨uneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).
https://doi.org/10.1103/PhysRevLett.91.066404
M. Garst, A. Rosch. Sign change of the Gr¨uneisen parameter and magnetocaloric effect near quantum critical points. Phys. Rev. B 72, 205129 (2005).
https://doi.org/10.1103/PhysRevB.72.205129
T. Zajarniuk, A. Szewczyk, P. Wi'sniewski, M.U. Gutowska, R. Puzniak, H. Szymczak, I. Gudim, V.A. Bedarev, M.I. Pashchenko, P. Tomczak, W. Szuszkiewicz. Quantum versus classical nature of the low-temperature magnetic phase transition in TbAl3(BO3)4. Phys. Rev. B 105, 094418 (2022).
https://doi.org/10.1103/PhysRevB.105.094418
A.P. Moina. Negative/positive electrocaloric effect in antiferroelectric squaric acid. J. Appl. Phys. 133, 094101 (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.